Physics > Current Electricity > 2.0 Conduction of current in a metal

  Current Electricity
    1.0 Introduction
    2.0 Conduction of current in a metal
    3.0 Ohm's law
    4.0 Combination of Resistors
    5.0 Electromotive force $\left( \xi \right)$
    6.0 Heating effect of current
    7.0 Wheatstone bridge
    8.0 Metre Bridge Or Slide wire bridge
    9.0 Potentiometer
    10.0 Electrical devices

2.1 Expression for drift velocity
Force experienced by electron in presence of electric field, $\vec F$= -e$\vec E$

Accelaration acquired by an electron , $$\vec a = \frac{{ - e\vec E}}{m}$$ where $m$ is the mass of an electron.

If $N$ electrons having random thermal velocities ${\vec u_1},{\vec u_2}.....{\vec u_n}$ and accelerates for time ${t_1},{t_2}.....{t_n}$ respectively, then final velocities are, $$\begin{equation} \begin{aligned} {{\vec v}_1} = {{\vec u}_1} + \vec a{t_1} \\ {{\vec v}_2} = {{\vec u}_2} + \vec a{t_2} \\ .... \\ .... \\ {{\vec v}_n} = {{\vec u}_n} + \vec a{t_n} \\\end{aligned} \end{equation} $$
Drift velocity of $N$ electrons, $$\begin{equation} \begin{aligned} {{\vec v}_d} = \frac{{{{\vec v}_1} + {{\vec v}_2} + .....+{{\vec v}_n}}}{N} \\ \Rightarrow \frac{{\left( {{{\vec u}_1} + \vec a{t_1}} \right) + \left( {{{\vec u}_2} + \vec a{t_2}} \right) + .....+\left( {{{\vec u}_n} + \vec a{t_n}} \right)}}{N} \\ \Rightarrow \frac{{{{\vec u}_1} + {{\vec u}_2} + .....+{{\vec u}_n}}}{N} + \frac{{\vec a({t_1} + {t_2} + .....+{t_n})}}{N} \\ \Rightarrow 0 + \vec a\tau \\ \Rightarrow \vec a\tau \\\end{aligned} \end{equation} $$
where $\tau$ is relaxation time. It is given as, $$\tau = \frac{{({t_1} + {t_2} + .....+{t_n})}}{N}$$
Thus, $$\begin{equation} \begin{aligned} \Rightarrow {{\vec v}_d} = \vec a\tau \\ \Rightarrow {{\vec v}_d} = \frac{{ - e\vec E\tau }}{m} \\\end{aligned} \end{equation} $$
where negative sign shows that the direction of drift velocity is opposite to that of $\vec E $

Relation between current $(I)$ and drift velocity ${({\vec v}_d})$

Consider a conductor of length $L$ and area of cross-section $A$.

Let $n$ = number of electron per unit volume,

${{v_d}}$ = drift velocity of an electron,

Number of electrons in length $L$ of a conductor is given by $=nAL$

Total charge in length $L=neAL$

Time taken by electron to pass the length $L$, $$t = \frac{L}{{{v_d}}}$$
Current $(I)$, $$\begin{equation} \begin{aligned} \Rightarrow I = \frac{q}{t} = \frac{{neAL}}{{\frac{L}{{{v_d}}}}} \\ \Rightarrow I = neA{v_d} \\\end{aligned} \end{equation} $$
Current density $(j)$, $$\begin{equation} \begin{aligned} \Rightarrow \overrightarrow j = \frac{I}{A} = \frac{{neA{v_d}}}{A} \\ \Rightarrow \vec j = ne{{\vec v}_d} \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD