Maths > Definite Integrals > 7.0 Properties of Definite Integrals

  Definite Integrals
    1.0 Theoretical Meaning
    2.0 Geometrical Meaning
    3.0 Fundamental Theorems
    4.0 Evaluation By Substitution
    5.0 Definite Integral as the Limit of Sum
    6.0 Summation of Series Using Definite Integral
    7.0 Properties of Definite Integrals
    8.0 Integral Inequality
    9.0 Walli's Formula
    10.0 Problems on Integral Functions
    11.0 Newton-Leibnitz Rule
    12.0 Reduction Formula
    13.0 Gamma and Beta Functions
    14.0 Important Results

7.1 Proof of Properties
Property $1$
$$\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( t \right)dt} $$

Put $x = t$ in any integral

Question 10. $I = \int\limits_0^{{\pi \over 2}} {\sin xdx} $

Solution: Let $x = t$ in integral $$ \Rightarrow dx = dt$$
Integral I become $$I = \int\limits_0^{{\pi \over 2}} {\sin xdx} $$ $$I = \left[ { - {\mathop{\rm cost}\nolimits} } \right]_0^{{\pi \over 2}}$$ $$I = \left[ { - \cos {\pi \over 2}} \right] - \left[ { - \cos 0} \right]$$ $$I = 0 + 1 = 1$$


Property $2$
$$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} $$

Let $F$ be anti derivative of $f$. Then, by the second fundamental theorem of calculus, we have
$$\int\limits_a^b {f\left( x \right)dx} = \left[ {F\left( b \right) - F\left( a \right)} \right]$$
$$\int\limits_a^b {f\left( x \right)dx} = - \left[ {F\left( a \right) - F\left( b \right)} \right]$$
$$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} $$
Here, we observe that, if $a = b$, then $$\int\limits_a^a {f\left( x \right)dx} = 0$$


Property $3$
$$\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} $$

Let $F$ be an derivative of $f$. Then
$$\begin{equation} \begin{aligned} \int\limits_a^b {f\left( x \right)dx} = \left[ {F\left( b \right) - F\left( a \right)} \right]\quad ...(i) \\ \int\limits_a^c {f\left( x \right)dx} = \left[ {F\left( c \right) - F\left( a \right)} \right]\quad ...(ii) \\ \int\limits_c^b {f\left( x \right)dx} = \left[ {F\left( b \right) - F\left( c \right)} \right]\quad ...(iii) \\\end{aligned} \end{equation} $$
Adding equation $(ii)$ and $(iii)$ we get,
$$\int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} = \left[ {F\left( b \right) - F\left( a \right)} \right] = \int\limits_a^b {f\left( x \right)dx} $$


Question 11. $I = \int\limits_{{e^{ - 1}}}^{{e^2}} {\left| {{{\ln x} \over x}} \right|dx} $

Solution: For $x \in \left[ {{e^{ - 1}},1} \right]$, $$\left| {{{\ln x} \over x}} \right| = - {{\ln x} \over x}$$ For $x \in \left[ {1,{e^2}} \right]$, $$\left| {{{\ln x} \over x}} \right| = {{\ln x} \over x}$$ $$I = \int\limits_{{e^{ - 1}}}^1 {\left| {{{\ln x} \over x}} \right|dx} + \int\limits_1^{{e^2}} {\left| {{{\ln x} \over x}} \right|dx} $$ $$I = - \int\limits_{{e^{ - 1}}}^1 {{{\ln x} \over x}dx} + \int\limits_1^{{e^2}} {{{\ln x} \over x}dx} $$ Let ${I_0} = \int {{{\ln x} \over x}dx} $ $${I_0} = \ln x\int {{1 \over x}dx} - \int {\left( {{1 \over x} \cdot \int {{1 \over x}dx} } \right)dx} $$ $${I_0} = {\left( {\ln x} \right)^2} - {I_0}$$ $${I_0} = {{{{\left( {\ln x} \right)}^2}} \over 2}$$ Using this in $I$, we get, $$I = - \left[ {{{{{\left( {\ln x} \right)}^2}} \over 2}} \right]_{{e^{ - 1}}}^1 + \left[ {{{{{\left( {\ln x} \right)}^2}} \over 2}} \right]_1^{{e^2}}$$ $$I = - 0 + {1 \over 2} + 2 - 0$$ $$I = {5 \over 2}$$


Property $4$
$$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {f\left( {a + b - x} \right)dx} } $$

Let $x = a + b - t$ $$ \Rightarrow dx = - dt$$ $$x = a \Rightarrow t = b$$ $$x = b \Rightarrow t = a$$ Integral become $$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( {a + b - t} \right)dt} $$ Using Property $2$, $$\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - t} \right)dt} $$ Using Property $1$, $$\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx} $$


Property $5$
$$\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} $$ Let $x = a - t$ $$ \Rightarrow dx = - dt$$ $$x = 0 \Rightarrow t = a$$ $$x = a \Rightarrow t = 0$$ Integral become $$\int\limits_0^a {f\left( x \right)dx} = - \int\limits_a^0 {f\left( {a - t} \right)dt} $$ Using Property 2, $$\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - t} \right)dt} $$ Using Property 1, $$\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} $$


Question 12. $I = \int\limits_0^{{\pi \over 4}} {\ln \left( {1 + \tan x} \right)dx} $

Solution: Let, $$I = \int\limits_0^{\frac{\pi }{4}} {\ln \left( {1 + \tan x} \right)dx} \quad ...(i)$$
Using Property 5, $$I = \int\limits_0^{{\pi \over 4}} {\ln \left( {1 + \tan \left( {{\pi \over 4} - x} \right)} \right)dx} $$ $$I = \int\limits_0^{{\pi \over 4}} {\ln \left( {1 + {{\tan {\pi \over 4} - \tan x} \over {1 + \tan {\pi \over 4}\tan x}}} \right)dx} $$ $$I = \int\limits_0^{{\pi \over 4}} {\ln \left( {1 + {{1 - \tan x} \over {1 + \tan x}}} \right)dx} $$ $$I = \int\limits_0^{{\pi \over 4}} {\ln \left( {{{1 + \tan x + 1 - \tan x} \over {1 + \tan x}}} \right)dx} $$ $$I = \int\limits_0^{\frac{\pi }{4}} {\ln \left( {\frac{2}{{1 + \tan x}}} \right)dx} \quad ...(ii)$$
Now adding both equation $(i)$ and $(ii)$ we get, $$2I = \int\limits_0^{{\pi \over 4}} {\ln \left( {1 + \tan x} \right) + \ln \left( {{2 \over {1 + \tan x}}} \right)dx} $$ $$2I = \int\limits_0^{{\pi \over 4}} {\ln 2dx} $$ $$I = {{\ln 2} \over 2}\left[ x \right]_0^{{\pi \over 4}}$$ $$I = {\pi \over 8}\ln 2$$


Question 13. $I = \int\limits_0^{{\pi \over 2}} {{{{{\tan }^7}x} \over {{{\tan }^7}x + {{\cot }^7}x}}dx} $

Solution: By using Property, $$I = \int\limits_0^{{\pi \over 2}} {{{{{\tan }^7}\left( {{\pi \over 2} - x} \right)} \over {{{\tan }^7}\left( {{\pi \over 2} - x} \right) + {{\cot }^7}\left( {{\pi \over 2} - x} \right)}}dx} $$ $$I = \int\limits_0^{{\pi \over 2}} {{{{{\cot }^7}x} \over {{{\tan }^7}x + {{\cot }^7}x}}dx} $$ Adding the both integrals, we get, $$2I = \int\limits_0^{{\pi \over 2}} {{{ta{n^7}x + {{\cot }^7}x} \over {{{\tan }^7}x + {{\cot }^7}x}}dx} $$ $$2I = \int\limits_0^{{\pi \over 2}} {1dx} $$ $$2I = \left[ x \right]_0^{{\pi \over 2}} = \left[ {{\pi \over 2} - 0} \right]$$ $$I = {\pi \over 4}$$


Property $6$
$$\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} $$

Using Property $3$, $$\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_a^{2a} {f\left( x \right)dx} $$ In the second integral, put $x = 2a - t$ $$ \Rightarrow dx = - dt$$ $$x = a \Rightarrow t = a$$ $$x = 2a \Rightarrow t = 0$$ Integral become $$\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} - \int\limits_a^0 {f\left( {2a - t} \right)dt} $$ Using Property 2, $$\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - t} \right)dt} $$ Using Property 1, $$\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} $$


Property $7$

Using Property $6$, $$\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} $$ In the second integral,
For $f\left( {2a - x} \right) = f\left( x \right)$ $$\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( x \right)dx} $$ $$\int\limits_0^{2a} {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $$ For $f\left( {2a - x} \right) = - f\left( x \right)$ $$\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} - \int\limits_0^a {f\left( x \right)dx} = 0$$


Question 14. $I = \int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{1 \over {1 + \cos x}}dx} $

Solution: By using the Property, $$I = \int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{1 \over {1 + \cos \left( {{{3\pi } \over 4} + {\pi \over 4} - x} \right)}}dx} $$ $$I = \int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{1 \over {1 - \cos x}}dx} $$ $$2I = \int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{1 \over {1 + \cos x}} + {1 \over {1 - \cos x}}dx} $$ $$2I = \int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{2 \over {1 - {{\cos }^2}x}}dx} $$ $$I = \int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{{{\mathop{\rm cosec}\nolimits} }^2}xdx} $$ $$I = \left[ { - \cot x} \right]_{{\pi \over 4}}^{{{3\pi } \over 4}}$$ $$I = 1 + 1 = 2$$


Property $8$

Using Property $3$, $$\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_{ - a}^0 {f\left( x \right)dx} + \int\limits_0^a {f\left( x \right)dx} $$ In first integral, Let $x = - t$
$$ \Rightarrow dx = - dt$$ $$x = - a \Rightarrow t = a$$ $$x = 0 \Rightarrow t = 0$$ Integral become $$\int\limits_{ - a}^a {f\left( x \right)dx} = - \int\limits_a^0 {f\left( { - t} \right)dt} + \int\limits_0^a {f\left( x \right)dx} $$ Using Property 1 and 2, $$\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {f\left( { - x} \right)dx} + \int\limits_0^a {f\left( x \right)dx} $$ For $f\left( { - x} \right) = f\left( x \right)$ $$\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( x \right)dx} $$ $$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $$ For $f\left( { - x} \right) = - f\left( x \right)$ $$\int\limits_{ - a}^a {f\left( x \right)dx} = - \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( x \right)dx} = 0$$


Question 15. $I = \int\limits_{ - \pi }^\pi {{{\sin }^3}x{{\cos }^2}xdx} $

Solution: Let $f\left( x \right) = {\sin ^3}x{\cos ^2}x$ $$f\left( { - x} \right) = {\sin ^3}\left( { - x} \right){\cos ^2}\left( { - x} \right) = - f\left( x \right)$$ So, function $f\left( x \right)$ is an odd function.
Integral become $$I = 0$$


Property $9$

For a function $f$ having time period $T$, net sum of area under the curve for each time period is same.


Question 16. $I = \int\limits_0^{28\pi } {{1 \over {1 + {e^{\sin x}}}}dx} $

Solution: Here $$f\left( x \right) = {1 \over {1 + {e^{\sin x}}}}$$ whose Time Period is $T = 2\pi $ $$I = 14\int\limits_0^{2\pi } {{1 \over {1 + {e^{\sin x}}}}dx} $$ Using Property 7, we get $$I = 14\int\limits_0^\pi {{1 \over {1 + {e^{\sin x}}}} + {1 \over {1 + {e^{\sin \left( {2\pi - x} \right)}}}}dx} $$ $$I = 14\int\limits_0^\pi {{1 \over {1 + {e^{\sin x}}}} + {1 \over {1 + {e^{ - {\mathop{\rm sinx}\nolimits} }}}}dx} $$ $$I = 14\int\limits_0^\pi {{1 \over {1 + {e^{\sin x}}}} + {{{e^{\sin x}}} \over {1 + {e^{{\mathop{\rm sinx}\nolimits} }}}}dx} $$ $$I = 14\int\limits_0^\pi {{{1 + {e^{\sin x}}} \over {1 + {e^{\sin x}}}}dx} $$ $$I = 14\left[ x \right]_0^\pi $$ $$I = 14\pi $$


Question 17. Let ${\pi \over 2} < v < \pi $ and $n \in N$ then prove that $$\int\limits_0^{n\pi + v} {\left| {\cos x} \right|dx} = 2n + 2 - \sin v$$

Solution: Let $I = \int\limits_0^{n\pi + v} {\left| {\cos x} \right|dx} $
Using Property 3, $$I = \int\limits_0^{n\pi } {\left| {\cos x} \right|dx} + \int\limits_{n\pi }^{n\pi + v} {\left| {\cos x} \right|dx} $$ $f\left( x \right) = \left| {\cos x} \right|$ is of Time Period $\pi $ so by Property 9, $$I = n\int\limits_0^\pi {\left| {\cos x} \right|dx} + \int\limits_0^v {\left| {\cos x} \right|dx} $$ $$I = n\left[ {\int\limits_0^{{\pi \over 2}} {\cos xdx} + \int\limits_{{\pi \over 2}}^\pi { - \cos xdx} } \right] + \int\limits_0^{{\pi \over 2}} {\cos xdx} + \int\limits_{{\pi \over 2}}^v { - \cos xdx} $$ $$I = n\left[ {\left( {\sin x} \right)_0^{{\pi \over 2}} - \left( {\sin x} \right)_{{\pi \over 2}}^\pi } \right] + \left[ {\sin x} \right]_0^{{\pi \over 2}} - \left[ {\sin x} \right]_{{\pi \over 2}}^v$$ $$I = n\left[ {1 - 0 - 0 + 1} \right] + 1 - 0 - \sin v + 1$$ $$I = 2n + 2 - \sin v$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD