Binomial Theorem
    8.0 Numerically Greatest term

8.0 Numerically Greatest term
If ${T_r}$ and ${T_{r + 1}}$ be the ${r^{th}}$ and ${(r + 1)^{th}}$ terms in the expansion of ${(a + x)^n}$, then
$$\left( {\frac{{{T_{r + 1}}}}{{{T_r}}}} \right) = \frac{{^n{C_r}{a^{n - r}}{x^r}}}{{^n{C_{r - 1}}{a^{n - r + 1}}{x^{r - 1}}}} = \left| {\frac{{n - r + 1}}{r}} \right|\left| {\frac{x}{a}} \right| = \left| {\frac{{n + 1}}{r} - 1} \right|\left| {\frac{x}{a}} \right|$$
Let numerically, ${T_{r + 1}}$ be the greatest term in the above expansion. Then,
$$\begin{equation} \begin{aligned} {T_{r + 1}} \geqslant {T_r} \\ \frac{{{T_{r + 1}}}}{{{T_r}}} \geqslant 1 \\ \left| {\frac{{n + 1}}{r} - 1} \right|\left| {\frac{x}{a}} \right| \geqslant 1 \\ \frac{{n + 1}}{r} \geqslant 1 + \left| {\frac{a}{x}} \right| \\ \frac{{n + 1}}{{1 + \left| {\frac{a}{x}} \right|}} \geqslant r \\\end{aligned} \end{equation} $$
From the above expression, calculate the value of $r$ keeping in mind that $r$ must be an integer and then find the value of ${T_{r + 1}}$ which will be the numerically greatest term.
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD