Set Theory
    11.0 Laws of algebra of sets

11.0 Laws of algebra of sets
Theorem 1: Idempotent law

For any set $A$,
$$\begin{equation} \begin{aligned} i.\;A \cup A = A \\ ii.\;A \cap A = A \\\end{aligned} \end{equation} $$

Proof:
$$\begin{equation} \begin{aligned} i.\;A \cup A = \{ x:x \in A\;or\;x \in A\} = \{ x:x \in A\} = A \\ ii.\;A \cap A = \{ x:x \in A\;and\;x \in A\} = \{ x:x \in A\} = A \\\end{aligned} \end{equation} $$


Theorem 2: Identity law

For a set $A$, $\emptyset $ and $U$ are the identity elements for union and intersection respectively.
$$\begin{equation} \begin{aligned} i.\;A \cup \emptyset = A \\ ii.\;A \cap U = A \\\end{aligned} \end{equation} $$

Proof: $$\begin{equation} \begin{aligned} i.\;A \cup \emptyset \; = \;\{ x:x \in A\,or\;x \in \emptyset \} = \{ x:x \in A\} = A \\ ii.\,A \cap U = \{ x:x \in A\,and\;x \in U\} = \{ x:x \in A\} = A \\\end{aligned} \end{equation} $$


Theorem 3: Commutative law

For any two sets $A$ and $B$, the union and intersection are commutative.
$$\begin{equation} \begin{aligned} i.\;A \cup B = B \cup A \\ ii.\;A \cap B = B \cap A \\\end{aligned} \end{equation} $$

Proof:
$$x \in A \cup B \Rightarrow x \in A\;\;or\;\;x \in B \Rightarrow x \in B\;\;or\;\;x \in A\; \Rightarrow x \in B \cup A$$


Theorem 4: Associative law

If $A$, $B$ and $C$ are any three sets then the union and intersection are associative.
$$\begin{equation} \begin{aligned} i.\;(A \cup B) \cup C = A \cup (B \cup C) \\ ii.\;A \cap (B \cap C) = A \cap (B \cap C) \\\end{aligned} \end{equation} $$

Proof:

i. Let $x$ be an arbitrary element of $(A \cup B) \cup C$ ,

$$\begin{equation} \begin{aligned} \Rightarrow x \in (A \cup B) \cup C \\ \Rightarrow x \in (A \cup B)\,or\;x \in C \\ \Rightarrow (x \in A\,or\,x \in B)\,or\;x \in C \\ \Rightarrow x \in A\,or\,(x \in B\,or\;x \in C) \\ \Rightarrow x \in A\,or\,x \in (B\, \cup C) \\ \Rightarrow x \in A\, \cup (B\, \cup C) \\ \Rightarrow (A \cup B) \cup C \subseteq A \cup (B \cup C) \\ Similarly, \\ \Rightarrow A \cup (B \cup C) \subseteq (A \cup B) \cup C \\ \Rightarrow (A \cup B) \cup C = A \cup (B \cup C) \\\end{aligned} \end{equation} $$


ii. Let $x$ be an arbitrary element of $(A \cap B) \cap C$
$$\begin{equation} \begin{aligned} \Rightarrow x \in (A \cap B) \cap C \\ \Rightarrow x \in (A \cap B)\,and\;x \in C \\ \Rightarrow (x \in A\,and\,x \in B)\,and\;x \in C \\ \Rightarrow x \in A\,and\,(x \in B\,and\;x \in C) \\ \Rightarrow x \in A\,and\,x \in (B\, \cap C) \\ \Rightarrow x \in A\, \cap (B\, \cap C) \\ \Rightarrow (A \cap B) \cap C \subseteq A \cap (B \cap C) \\ Similarly, \\ \Rightarrow A \cap (B \cap C) \subseteq (A \cap B) \cap C \\ \Rightarrow (A \cap B) \cap C = A \cap (B \cap C) \\\end{aligned} \end{equation} $$


Theorem 5: Distributive law

If $A$ , $B$ and $C$ are any three sets then,

i. Union is distributive over intersection, and
ii. Intersection is distributive over union

$$\begin{equation} \begin{aligned} i.\;A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ ii.\;A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \\\end{aligned} \end{equation} $$

Proof:

i. Let $x$ be an arbitrary element of $A \cup (B \cap C)$
$$\begin{equation} \begin{aligned} \Rightarrow x \in A \cup (B \cap C) \\ \Rightarrow x \in A\;or\;\;x \in (B \cap C) \\ \Rightarrow x \in A\,or\,(x \in B\,and\;x \in C) \\ \Rightarrow x \in A\,or\,x \in B\,and\,x \in A\,or\;x \in C) \\ \Rightarrow x \in (A\, \cup B)\,\;and\;x \in (A\, \cup C) \\ \Rightarrow x \in ((A\, \cup B)\,\; \cap \;(A\, \cup C)) \\ \Rightarrow A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \\ Similarly, \\ \Rightarrow (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C) \\ \Rightarrow A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\\end{aligned} \end{equation} $$


ii. Let $x$ be an arbitrary element of $A \cap (B \cup C)$
$$\begin{equation} \begin{aligned} \Rightarrow x \in A \cap (B \cup C) \\ \Rightarrow x \in A\;and\;x \in (B \cup C) \\ \Rightarrow x \in A\,and\,(x \in B\,or\;x \in C) \\ \Rightarrow x \in A\,and\,x \in B\,or\,x \in A\,and\;x \in C) \\ \Rightarrow x \in (A\, \cap B)\,\;or\;x \in (A\, \cap C) \\ \Rightarrow x \in ((A\, \cap B)\,\; \cup \;(A\, \cap C)) \\ \Rightarrow A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) \\ Similarly, \\ \Rightarrow (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C) \\ \Rightarrow A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \\\end{aligned} \end{equation} $$


Theorem 6: De-Morgan's law

If $A$ and $B$ are any two sets then
$$\begin{equation} \begin{aligned} i.\;(A \cup B)' = A' \cap B' \\ ii.\;(A \cap B)' = A' \cup B' \\\end{aligned} \end{equation} $$

Proof:

i. Let $x$ be an arbitrary element of $(A \cup B)'$ and $y$ be an arbitrary element of $A' \cap B'$
Then,
$$\begin{equation} \begin{aligned} Considering\;element\;x \\ \Rightarrow x \in (A \cup B)' \\ \Rightarrow x \notin (A \cup B) \\ \Rightarrow x \notin \;A\;and\;x \notin \;B \\ \Rightarrow x \in \;A'\;and\;x \in \;B' \\ \Rightarrow x \in \;A'\; \cap \;B' \\ \Rightarrow (A \cup B)' \subseteq A'\; \cap \;B' \\ Now,\;considering\;element\;y \\ \Rightarrow y \in A' \cap B' \\ \Rightarrow y \in \;A'\;and\;y \in \;B' \\ \Rightarrow y \notin \;A\;and\;y \notin \;B \\ \Rightarrow y \notin \;A\; \cup \;B \\ \Rightarrow y \in \;(A\; \cup \;B)' \\ \Rightarrow A'\; \cap \;B' \subseteq (A \cup B)' \\ Hence, \\ (A \cup B)' = A' \cap B' \\\end{aligned} \end{equation} $$



ii. Let $x$ be an arbitrary element of $(A \cap B)'$ and $y$ be an arbitrary element of $A' \cup B'$

Then,
$$\begin{equation} \begin{aligned} Considering\;element\;x \\ \Rightarrow x \in (A \cap B)' \\ \Rightarrow x \notin (A \cap B) \\ \Rightarrow x \notin \;A\;or\;x \notin \;B \\ \Rightarrow x \in \;A'\;or\;x \in \;B' \\ \Rightarrow x \in \;A'\; \cup B' \\ \Rightarrow (A \cap B)' \subseteq A'\; \cup \;B' \\ Now,\;considering\;element\;y \\ \Rightarrow y \in A' \cup B' \\ \Rightarrow y \in \;A'\;or\;y \in \;B' \\ \Rightarrow y \notin \;A\;or\;y \notin \;B \\ \Rightarrow y \notin \;A\; \cap \;B \\ \Rightarrow y \in \;(A\; \cup \;B)' \\ \Rightarrow A'\; \cup \;B' \subseteq (A \cap B)' \\ Hence, \\ (A \cap B)' = A' \cup B' \\\end{aligned} \end{equation} $$



Illustration 24. If $A$ and $B$ are two sets, prove that, if $A \cap B = A \cup B$ then, $A = B$.

Solution: Let, $$A = B$$
Then,$$\begin{equation} \begin{aligned} A \cup B = A\;\;\;\;\;\;\;\;\;\;(i) \\ A \cap B = A\;\;\;\;\;\;\;\;\;\;(ii) \\\end{aligned} \end{equation} $$
Thus from $(i)$ and $(ii)$, we get,
$$\begin{equation} \begin{aligned} A \cup B = A \cap B = A = B \\ A = B \Rightarrow A \cap B = A \cup B\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(iii) \\\end{aligned} \end{equation} $$

Conversely,
Let, $$A \cap B = A \cup B$$
and,
$$x \in A$$
$$\begin{equation} \begin{aligned} x \in A \cup B \\ x \in A \cap B \\ x \in A\;\;and\;x \in B \\ A \subset B\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(iv) \\\end{aligned} \end{equation} $$

Now, let
$$y \in B$$
$$\begin{equation} \begin{aligned} y \in A \cup B \\ y \in A \cap B \\ y \in A\;\;and{\mkern 1mu} \;y \in B \\ B \subset A\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(v) \\\end{aligned} \end{equation} $$
From $(iv)$ and $(v)$,
we get, $$A = B$$
Thus, $$A \cap B = A \cup B \Rightarrow A = B\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(vi)$$
From, $(iii)$ and $(vi)$
$$A \cap B = A \cup B \Leftrightarrow A = B$$


Illustration 25: Let $A$, $B$ and $C$ be the sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Show that $B = C$.

Solution: Given,
$$A \cup B = A \cup C$$
On intersection with set $C$,
$$(A \cup B) \cap C = (A \cup C) \cap C$$
We know that,
$$(A \cup C) \cap C = C$$
Thus,
$$(A \cap C) \cup (B \cap C) = C$$
Also given that,
$$A \cap B = A \cap C$$
Hence, we can write it as,
$$(A \cap B) \cup (B \cap C) = C\;\;\;\;\;\;\;\;\;(i)$$

Now, on intersection with set $B$,
$$(A \cup B) \cap B = (A \cup C) \cap B$$
We know that,
$$(A \cup B) \cap B = B$$
Thus,
$$(A \cap B) \cup (B \cap C) = B$$
Also given that,
$$A \cap B = A \cap C$$
Hence, we can write it as,
$$(A \cap B) \cup (B \cap C) = B\;\;\;\;\;\;\;\;\;(ii)$$

From $(i)$ and $(ii)$ , we get,
$$(A \cap B) \cup (B \cap C) = C = B$$
i.e.,
$$B = C$$
Hence proved.


Illustration 26. For any two sets $A$ and $B$ prove that, $P(A \cap B) = P(A) \cap P(B)$.

Solution: To prove,
$$P(A \cap B) = P(A) \cap P(B)$$
We use the property that if two sets are subsets of each other, then they are equal sets.
i.e.
$$P(A \cap B) \subset P(A) \cap P(B)\,\;and\;\;P(A) \cap P(B) \subset P(A \cap B)$$ would imply, $$P(A \cap B) = P(A) \cap P(B)$$

Let us consider a set $X$,
$$X \in P(A \cap B)$$
This means, $X$ is a subset of the intersection of $A$ and $B$,
$$X \subset A \cap B$$
Also, if a set is a subset of intersection of two sets, then it is a subset of each of the two sets.
i.e. $$X \subset A\;\;and\;\;X \subset B$$
And, if a set is a subset of another set, then it belongs to the power set of the super-set, i.e., $$X \in P(A)\;\;and\;\;X \in P(B)$$
This implies, $$X \in P(A) \cap P(B)$$
Thus,
$$P(A \cap B) \subset P(A) \cap P(B)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,....(i)$$

Now let us consider a set $Y$,
$$Y \in P(A) \cap P(B)$$
Then, $$ \Rightarrow Y \in P(A)\;\;and\;\;Y \in P(B)$$
Thus, $Y$ is a subset of each of the two sets, $$ \Rightarrow Y \subset A\,\,and\,\,Y \subset B$$
Hence, $Y$ is a subset of their intersections and thus belongs to the power set of their intersections.
$$Y \subset A \cap B \Rightarrow Y \in P(A \cap B)$$
Thus, $$P(A) \cap P(B) \subset P(A \cap B)\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;...(ii)$$
From $(i)$ and $(ii)$, it is clear that, $$P(A \cap B) \subset P(A) \cap P(B)\,\;and\;\;P(A) \cap P(B) \subset P(A \cap B)$$
i.e., $$P(A \cap B) = P(A) \cap P(B)$$
Hence proved.


Illustration 27. Suppose ${A_1}$, ${A_2}$,......, ${A_{30}}$ are thirty sets each with five elements and ${B_1}$, ${B_2}$,......, ${B_n}$ are $n$ sets each with three elements, and $\bigcup\limits_{i = 1}^{30} {{A_i}} = \bigcup\limits_{j = 1}^n {{B_j}} = S$.Assume that each element of $S$ belongs to exactly ten of the ${{A_i}}$'s and nine of the ${{B_j}}$ 's. Find $n$.

Solution: Since given that ${{A_i}}$ has exactly $5$ elements each and each element of $S$ belongs to exactly ten of the ${{A_i}}$'s,
$$\forall \;\;1 \le i \le 30,\;n({A_i}) = 5$$,
$$\begin{equation} \begin{aligned} S = \bigcup\limits_{i = 1}^{30} {{A_i}} \\ n(S) = {1 \over {10}}\sum\limits_{i = 1}^{30} {n({A_i})} \\ n(S) = {1 \over {10}}(5 \times 30) = 15\;\;\;\;\;\;\;\;...(i) \\\end{aligned} \end{equation} $$
Also given that ${{B_j}}$ has exactly $3$ elements each and each element of $S$ belongs to exactly nine of the ${{B_j}}$'s,
$$\forall \;\;1 \le j \le n,\;n({B_j}) = 3$$
$$\begin{equation} \begin{aligned} S = \bigcup\limits_{j = 1}^n {{B_j}} \\ n(S) = {1 \over 9}\sum\limits_{j = 1}^n {n({B_j})} \\ n(S) = {1 \over 9}(3n) = {n \over 3}\;\;\;\;\;\;\;\;\;\;\;\;\;...(ii) \\\end{aligned} \end{equation} $$
From $(i)$ and $(ii)$, we get,
$$15 = {n \over 3} \Rightarrow n = 45$$
Thus the number of sets in $B$ is $45$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD