Matrices and Determinants
    8.0 Cramer's rule

8.0 Cramer's rule
Let us consider a system of equations ${a_1}x + {b_1}y + {c_1}z = {d_1}$
${a_2}x + {b_2}y + {c_2}z = {d_2}$
${a_3}x + {b_3}y + {c_3}z = {d_3}$

Here $\Delta = \left| {\begin{array}{c} {{a_1}}&{{b_1}}&{{c_1}} \\ {{a_2}}&{{b_2}}&{{c_2}} \\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,$ ${\Delta _1} = \left| {\begin{array}{c} {{d_1}}&{{b_1}}&{{c_1}} \\ {{d_2}}&{{b_2}}&{{c_2}} \\ {{d_3}}&{{b_3}}&{{c_3}} \end{array}} \right|$
${\Delta _2} = \left| {\begin{array}{c} {{a_1}}&{{d_1}}&{{c_1}} \\ {{a_2}}&{{d_2}}&{{c_2}} \\ {{a_3}}&{{d_3}}&{{c_3}} \end{array}} \right|,$ ${\Delta _3} = \left| {\begin{array}{c} {{a_1}}&{{b_1}}&{{d_1}} \\ {{a_2}}&{{b_2}}&{{d_2}} \\ {{a_3}}&{{b_3}}&{{d_3}} \end{array}} \right|$
By Cramer's rule , we have $x = \frac{{{\Delta _1}}}{\Delta },y = \frac{{{\Delta _2}}}{\Delta }\& z = \frac{{{\Delta _3}}}{\Delta }$


Question 14.

Solve the following system of linear equations using cramer's method

$x + 2y = 0$
$ - x + y + z = 1$
$x + 2y + 3z = 0$

Solution:

\[\Delta = \left| {\begin{array}{c} 1&2&0 \\ { - 1}&1&1 \\ 1&2&3 \end{array}} \right| = \left| {\begin{array}{c} 1&1 \\ 2&3 \end{array}} \right| - 2\left| {\begin{array}{c} { - 1}&1 \\ 1&3 \end{array}} \right| = 9\]

\[{\Delta _1} = \left| {\begin{array}{c} 0&2&0 \\ 1&1&1 \\ 0&2&3 \end{array}} \right| = - 2\left| {\begin{array}{c} 1&1 \\ 0&3 \end{array}} \right| = - 6\]

\[{\Delta _2} = \left| {\begin{array}{c} 1&0&0 \\ { - 1}&1&1 \\ 1&0&3 \end{array}} \right| = 1\left| {\begin{array}{c} 1&1 \\ 0&3 \end{array}} \right| = 3\]

\[{\Delta _3} = \left| {\begin{array}{c} 1&2&0 \\ { - 1}&1&1 \\ 1&2&0 \end{array}} \right| = 0\]
$(\because {R_1} = {R_3})$

$x = \frac{{{\Delta _1}}}{{{\Delta _{}}}} = - \frac{6}{9} = \frac{{ - 2}}{3}$ , $y = \frac{{{\Delta _2}}}{{{\Delta _{}}}} = \frac{3}{9} = \frac{1}{3}$ , $z = 0$


Question 15.

Solve the following equations by cramer's rule
$\begin{equation} \begin{aligned} x + y + z = 9 \\ 2x + 5y + 7z = 52 \\ 2x + y - z = 0 \\\end{aligned} \end{equation} $

Solution:

Here \[\Delta = \left| {\begin{array}{c} 1&1&1 \\ 2&5&7 \\ 2&1&{ - 1} \end{array}} \right|\;applying\left[ {{C_2} \to {C_2} - {C_{1,}}{C_3} \to {C_3} - {C_1}} \right]\]

\[\therefore \Delta = \left| {\begin{array}{c} 1&0&0 \\ 2&3&5 \\ 2&{ - 1}&{ - 3} \end{array}} \right| = 1.\left( { - 9 + 5} \right) = - 4\]

\[{\Delta _1} = \left| {\begin{array}{c} 9&1&1 \\ {52}&5&7 \\ 0&1&{ - 1} \end{array}} \right|\ applying\left[ {{C_2} \to {C_2} + {C_3}} \right]\]

\[\therefore {\Delta _1} = \left| {\begin{array}{c} 9&2&1 \\ {52}&{12}&7 \\ 0&0&{ - 1} \end{array}} \right| = - 1\left( {108 - 104} \right) = - 4\]

\[{\Delta _2} = \left| {\begin{array}{c} 1&9&1 \\ 2&{52}&7 \\ 2&0&{ - 1} \end{array}} \right|\ applying\left[ {{C_1} \to {C_1} + 2{C_3}} \right]\]

\[\therefore {\Delta _2} = \left| {\begin{array}{c} 3&9&1 \\ {16}&{52}&7 \\ 0&0&{ - 1} \end{array}} \right| = - 1\left( {156 - 144} \right) = - 12\]

\[{\Delta _3} = \left| {\begin{array}{c} 1&1&9 \\ 2&5&{52} \\ 2&1&0 \end{array}} \right|\ applying\left[ {{C_1} \to {C_1} - 2{C_2}} \right]\]

\[\therefore {\Delta _3} = \left| {\begin{array}{c} { - 1}&1&9 \\ { - 8}&5&{52} \\ 0&1&0 \end{array}} \right| = - 1\left( { - 52 + 72} \right) = - 20\]

Therefore,by Cramer's rule

$x = \frac{{{\Delta _1}}}{\Delta } = \frac{{ - 4}}{{ - 4}} = 1$

$y = \frac{{{\Delta _2}}}{\Delta } = \frac{{ - 12}}{{ - 4}} = 3$

and $z = \frac{{{\Delta _3}}}{\Delta } = \frac{{ - 20}}{{ - 4}} = 5$

$\therefore x = 1,y = 3,z = 5$


Remarks:-
  • If $\Delta \ne 0$,then system will have unique finite solution,and so equations are consistent.
  • If $\Delta = 0$,and atleast one of ${\Delta _1},{\Delta _2},{\Delta _3}$ be non zero ,then the system has no solution that is equations are inconsistent .
  • If $\Delta = {\Delta _1} = {\Delta _2} = {\Delta _3} = 0$,then equations will have infinite number of solutions,and atleast one cofactor of $\Delta $is non zero that is equations are consistent.
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD