Probability
    13.0 Mean and variance of a discrete random variable

13.0 Mean and variance of a discrete random variable
Mean:

If a random variable $X$ takes the values ${x_1},{x_2},...,{x_n}$ with respective probabilities ${p_1},{p_2},...,{p_n}$ , then, the mean $\overline X $ of $X$ is defined as $$\overline X = {p_1}{x_1} + {p_2}{x_2} + {p_3}{x_3} + ..... + {p_n}{x_n} = \sum\limits_{i = 1}^n {{p_i}{x_i}} $$

The mean of a random variable $X$ is also known as its mathematical expectation and is denoted by $E(X)$.



Variance of a discrete random variable:

If a random variable $X$ takes the values ${x_1},{x_2},...,{x_n}$ with respective probabilities ${p_1},{p_2},...,{p_n}$ , then, the variance of $X$ is defined as
$$\begin{equation} \begin{aligned} Var(X) = {p_1}{({x_1} - \bar X)^2} + {p_2}{({x_2} - \bar X)^2} + .... + {p_n}{({x_n} - \bar X)^2} \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}{{({x_i} - \bar X)}^2}} \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}({x_i}^2 + {{\bar X}^2} - 2{x_i}\bar X)} \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}{x_i}^2 + {{\bar X}^2}\sum\limits_{i = 1}^n {{p_i}} - 2\bar X\sum\limits_{i = 1}^n {{p_i}{x_i}} } \\ We\;know\;\;that, \\ \sum\limits_{i = 1}^n {{p_i}{x_i}} = \bar X\;\;\;and\;\;\sum\limits_{i = 1}^n {{p_i}} = 1 \\ Thus, \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}{x_i}^2 + {{\bar X}^2}\sum\limits_{i = 1}^n {{p_i}} - 2\bar X\sum\limits_{i = 1}^n {{p_i}{x_i}} } \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}{x_i}^2 + {{\bar X}^2}\sum\limits_{i = 1}^n {{p_i}} - 2\bar X.\bar X} \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}{x_i}^2 + {{\bar X}^2}(1) - 2\bar X.\bar X} \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}{x_i}^2 + {{\bar X}^2} - 2\bar X.\bar X} \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}{x_i}^2 + {{\bar X}^2} - 2{{\bar X}^2}} \\ Var(X) = \sum\limits_{i = 1}^n {{p_i}{x_i}^2 - {{\bar X}^2}} \\ Var(X) = {\sum\limits_{i = 1}^n {{p_i}{x_i}^2 - \left( {\sum\limits_{i = 1}^n {{p_i}{x_i}} } \right)} ^2} \\ Var(X) = E({X^2}) - {[E(X)]^2} \\\end{aligned} \end{equation} $$



Standard deviation:
$$\sigma = \sqrt {Var(X)} $$


Illustration 45. A salesman wants to know the average number of units he sells per sales call. He checks his past sales records and comes up with the following probabilities:

Sales (in units):$0$$1$$2$$3$$4$$5$
Probability:$0.15$$0.20$$0.10$$0.05$$0.30$$0.20$

What is the average number of units he sells per sales call?

Solution: The average number of unit he sell per sales call is,
$$\begin{equation} \begin{aligned} E(X) = \sum\limits_{i = 1}^7 {{p_i}{x_i}} \\ = 0.15 \times 0 + 0.20 \times 1 + 0.10 \times 2 + 0.05 \times 3 + 0.30 \times 4 + 0.20 \times 5 \\ = 0 + 0.20 + 0.20 + 0.15 + 1.20 + 1.00 \\ = 2.75 \\\end{aligned} \end{equation} $$

The average number of units he sells per sales call is $2.75$.


Illustration 46. Find the mean, variance and standard deviation of the number of heads in a simultaneous toss of three coins.

Solution: Let $X$ denote the number of heads in a simultaneous toss of three coins.
The possibilities are:

i. No heads
$$\{ (TTT)\} $$

ii. Exactly one head
$$\{ (TTH),(HTT),(THT)\} $$

iii. Exactly two heads
$$\{ (HTH),(HHT),(THH)\} $$

iv. All heads
$$\{ (HHH)\} $$

Then, $X$ can take the values $ 0, 1, 2, 3$.
$$P(X = 0) = Getting\;no\;head = {1 \over 8}$$

$$P(X = 1) = Getting\;one\;head = {3 \over 8}$$

$$P(X = 2) = Getting\;two\;head = {3 \over 8}$$

$$P(X = 3) = Getting\;all\;three\;heads = {1 \over 8}$$

Thus, the probability distribution is,

$X$$0$$1$$2$$3$
$P(X)$${1 \over 8}$${3 \over 8}$${3 \over 8}$${1 \over 8}$

Mean and variance:

${x_i}$${p_i} = P(X = {x_i})$${p_i}{x_i}$${p_i}{x_i}^2$
$0$${1 \over 8}$$0$$0$
$1$${3 \over 8}$${3 \over 8}$${3 \over 8}$
$2$${3 \over 8}$${6 \over 8}$${{12} \over 8}$
$3$${1 \over 8}$${3 \over 8}$${9 \over 8}$


$\sum\limits_{}^{} {{p_i}{x_i}} = {3 \over 2}$$\sum\limits_{}^{} {{p_i}{x_i}^2} = 3$
Thus we have,
$\sum\limits_{}^{} {{p_i}{x_i}} = {3 \over 2}$ and $\sum\limits_{}^{} {{p_i}{x_i}^2} = 3$
$$E(X) = \sum\limits_{}^{} {{p_i}{x_i}} = {3 \over 2}$$

Variance:
$$Var(X) = \sum\limits_{}^{} {{p_i}{x_i}^2} - {\left( {\sum\limits_{}^{} {{p_i}{x_i}} } \right)^2} = 3 - {\left( {{3 \over 2}} \right)^2} = {3 \over 4}$$

Standard deviation $$\sigma = \sqrt {Var(X)} = \sqrt {{3 \over 4}} = {{\sqrt 3 } \over 2} = 0.87$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD