Electrochemistry
    12.0 Nernst Equation

12.0 Nernst Equation
Dependence of electrode potential depends on concentration is explained by Nernst Equation using thermodynamics.
Consider an equation $$Aa + Bb \to Cc + Dd\ \ \ \ \ ...(i)$$
Gibbs free energy of the above equation is given by
$$G = \Delta {G^0} + 2.303RT{\log _{10}}\frac{{({a_C}^c \times {a_D}^d)}}{{({a_A}^a \times {a_B}^b)}}...(ii)$$
where $a$ represents the activity of particular reactants and products indicated by the suffix

$\Delta {G^0}$ represents the free energy change of the reaction when the reactants and products are taken in the standard conditions, and called standard free energy change

$G$ represents the free energy change of a cell reaction, related to electrical work that can be obtained from the cell. It is related as $$\Delta {G^0} = - nF{E^0}$$

Substitute these values in equation $i$, we get
$$\begin{equation} \begin{aligned} - nF{E_{cell}} = - nF{E^0} + 2.303RT{\log _{10}}\frac{{({a_C}^c \times {a_D}^d)}}{{({a_A}^a \times {a_B}^b)}}...(iii) \\ nF{E_{cell}} = nF{E^0} - 2.303RT{\log _{10}}\frac{{({a_C}^c \times {a_D}^d)}}{{({a_A}^a \times {a_B}^b)}}...(iv) \\ {E_{cell}} = {E^0} - 2.303\frac{{RT}}{{nF}}{\log _{10}}\frac{{({a_C}^c \times {a_D}^d)}}{{({a_A}^a \times {a_B}^b)}}...(v) \\\end{aligned} \end{equation} $$

This is Nernst equation.

Lets put all the known values like $$\begin{equation} \begin{aligned} R = 8.314J{K^{ - 1}}mo{l^{ - 1}} \\ T = 298K \\ F = 96500C \\\end{aligned} \end{equation} $$
So equation ($v$) reduces to
$$\begin{equation} \begin{aligned} {E_{cell}} = {E^0} - 2.303 \times \frac{{8.314 \times 298}}{{n \times 96500}}{\log _{10}}\frac{{({a_C}^c \times {a_D}^d)}}{{({a_A}^a \times {a_B}^b)}} \\ {E_{cell}} = {E^0} - \frac{{0.0591}}{n} \times {\log _{10}}\frac{{({a_C}^c \times {a_D}^d)}}{{({a_A}^a \times {a_B}^b)}} \\ {E_{cell}} = {E^0} - \frac{{0.0591}}{n} \times {\log _{10}}\frac{{\left[ {\Pr oduct} \right]}}{{\left[ {\operatorname{Re} ac\tan t} \right]}} \\\end{aligned} \end{equation} $$

Now lets find out the potential of single electrode (say anode)
$$M \to {M^{n + }} + n{e^ - }$$...$(i)$
On anode, oxidation occurs so find out the potential for this oxidation reaction by applying Nernst equation,
$${E_{oxd}} = {E_{oxd}}^0 - \frac{{0.0591}}{n}{\log _{10}}\frac{{\left[ {{M^{n + }}} \right]}}{{\left[ M \right]}}$$
${E_{oxd}}$ is the electrode potential of oxidation half cell and ${E_{oxd}}^0$ is standard electrode potential of oxidation half cell $${E_{oxd}} = {E_{oxd}}^0 - \frac{{0.0591}}{n}{\log _{10}}\left[ {{M^{n + }}} \right]$$


Now lets find out the potential of single electrode (say cathode)
$${N^{n + }} + n{e^ - } \to N$\ \ \ ...(ii)$
Lets find out the potential of this by applying nernst equation,
$${E_{red}} = {E_{red}}^0 - \frac{{0.0591}}{n}{\log _{10}}\frac{{\left[ N \right]}}{{\left[ {{N^{n + }}} \right]}}$$


Now consider that $M$ and $N$ form a cell, so combine reaction $(i)$ and $(ii)$, we get
$${N^{n + }} + M \to N + {M^{n + }}$$
$$\begin{equation} \begin{aligned} {E_{red}} + {E_{oxd}} = {E_{red}}^0 - \frac{{0.0591}}{n}{\log _{10}}\frac{{\left[ N \right]}}{{\left[ {{N^{n + }}} \right]}} + {E_{oxd}}^0 - \frac{{0.0591}}{n}{\log _{10}}\frac{{\left[ {{M^{n + }}} \right]}}{{\left[ M \right]}} \\ {E_{cell}} = {E_{red}} + {E_{oxd}} \\ {E_{cell}}^0 = {E_{red}}^0 + {E_{oxd}}^0 \\ {E_{cell}} = {E_{cell}}^0 - \frac{{0.0591}}{n}{\log _{10}}\left\{ {\frac{{\left[ N \right]}}{{\left[ {{N^{n + }}} \right]}} \times \frac{{\left[ {{M^{n + }}} \right]}}{{\left[ M \right]}}} \right\} \\ {E_{cell}} = {E_{cell}}^0 - \frac{{0.0591}}{n}{\log _{10}}\left\{ {\frac{{product}}{{reac\tan t}}} \right\} \\\end{aligned} \end{equation} $$

Note: The concentration of pure solids and liquids are taken as unity.
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD