Properties and Solution of Triangles
    8.0 Radius of circumcentre

8.0 Radius of circumcentre
In geometry, the circumscribed circle or circumcircle of a triangle is a circle which passes through all the vertices of a triangle. The center of this circle is called circumcentre and the radius of this circle is called circumradius.

Radius of circumcircle is given as $$\frac{a}{{2\sin A}} = \frac{b}{{2\sin B}} = \frac{c}{{2\sin C}} = \frac{{abc}}{{4\Delta }}$$ where $\Delta$ is the area of triangle $ABC$.

Proof: Consider a triangle $ABC$ circumscribed in a circle with center $O$. Draw a perpendicular from point $O$ on $AB$.
As it is clear from the figure that $BC=a$, $CA=b$ and $AB=c$
In triangle $BDO$, we have $$\sin C = \frac{{\frac{c}{2}}}{R} = \frac{c}{{2R}}$$
$\Delta $ is the area of triangle $ABC$
$$\begin{equation} \begin{aligned} \Delta = \frac{1}{2}ab\sin C \\ \Delta = \frac{1}{2}ab\frac{c}{{2R}} \\ \Delta = \frac{{abc}}{{4R}} \\ R = \frac{{abc}}{{4\Delta }} \\\end{aligned} \end{equation} $$
putting the value of $\Delta $ in above expression we get $$\begin{equation} \begin{aligned} R = \frac{{abc}}{{4 \times \frac{1}{2} \times ab\sin C}} \\ R = \frac{c}{{2\sin C}} \\\end{aligned} \end{equation} $$

Question 15. In a triangle $ABC$, prove that $$\sin A + \sin B + \sin C = \frac{s}{R}$$

Solution: In a triangle$ABC$, we know that $$\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}=2R$$
$$\begin{equation} \begin{aligned} \sin A = \frac{a}{{2R}} \\ \sin B = \frac{a}{{2R}} \\ \sin C = \frac{a}{{2R}} \\\end{aligned} \end{equation} $$
$$\begin{equation} \begin{aligned} \sin A + \sin B + \sin C = \frac{{a + b + c}}{{2R}} = \frac{{2s}}{{2R}} \\ \sin A + \sin B + \sin C = \frac{s}{R} \\\end{aligned} \end{equation} $$

Question 16. In a triangle$ABC$, prove that $$\frac{1}{{s - a}} + \frac{1}{{s - b}} + \frac{1}{{s - c}} - \frac{1}{s} = \frac{{4R}}{\Delta }$$

Solution: $$\begin{equation} \begin{aligned} \frac{1}{{s - a}} + \frac{1}{{s - b}} + \frac{1}{{s - c}} - \frac{1}{s} \\ (\frac{1}{{s - a}} + \frac{1}{{s - b}}) + (\frac{1}{{s - c}} - \frac{1}{s}) \\ \frac{{2s - a - b}}{{(s - a)(s - b)}} + \frac{{s - s + c}}{{s(s - c)}} \\\end{aligned} \end{equation} $$ Using $2s=a+b+c$
$$\begin{equation} \begin{aligned} \frac{c}{{(s - a)(s - b)}} + \frac{c}{{s(s - c)}} \\ c[\frac{{(s - a)(s - b) + s(s - c)}}{{(s - a)(s - b)s(s - c)}}] \\ c[\frac{{2{s^2} - s(a + b + c) + ab}}{{{\Delta ^2}}}] \\ c[\frac{{2{s^2} - s(2s) + ab}}{{{\Delta ^2}}}] \\ \frac{{abc}}{{{\Delta ^2}}} \\\end{aligned} \end{equation} $$
Using $$\Delta = \frac{{abc}}{{4R}}$$, we get $$\frac{{4R\Delta }}{{{\Delta ^2}}} = \frac{{4R}}{\Delta }$$
which is equal to RHS.

Question 17. If the circumradius of an isosceles triangle $ABC$ such that $AB=AC$, then find the value of angle $A$.

Solution: We know that $$\begin{equation} \begin{aligned} \sin B = \frac{b}{{2R}} \\ = \frac{{AC}}{{2R}} \\ = \frac{R}{{2R}} \\\end{aligned} \end{equation} $$ Using the given condition that $R=AC$
$$\begin{equation} \begin{aligned} = \frac{1}{2} \\ B = \frac{\pi }{6}or\frac{{5\pi }}{6} \\\end{aligned} \end{equation} $$
When $B = \frac{{5\pi }}{6}$
then $$B = \frac{{5\pi }}{6},C = \frac{{5\pi }}{6}...(AB = AC;\angle B = \angle C)$$
In that case $$B + C > \pi $$ which is not possible so $B = \frac{{5\pi }}{6}$ not possible.
So $$B = C = \frac{\pi }{6}$$
therefore, $$\begin{equation} \begin{aligned} A = \pi - (\frac{\pi }{6} + \frac{\pi }{6}) \\ A = \frac{{2\pi }}{3} \\\end{aligned} \end{equation} $$

Question 18. In a triangle $ABC$, prove that $$s = 4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$$

Solution: In a triangle$ABC$
$$\begin{equation} \begin{aligned} \cos \frac{A}{2} = \sqrt {\frac{{s(s - a)}}{{bc}}} \\ \cos \frac{B}{2} = \sqrt {\frac{{s(s - b)}}{{ac}}} \\ \cos \frac{C}{2} = \sqrt {\frac{{s(s - c)}}{{ab}}} \\ R = \frac{{abc}}{{4\Delta }} \\\end{aligned} \end{equation} $$
Consider RHS:$$\begin{equation} \begin{aligned} 4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} \\ 4 \times \frac{{abc}}{{4\Delta }} \times \sqrt {\frac{{s(s - a)}}{{bc}}} \times \sqrt {\frac{{s(s - b)}}{{ac}}} \times \sqrt {\frac{{s(s - c)}}{{ab}}} \\ \frac{{abc}}{\Delta } \times s \times \sqrt {\frac{{s(s - a)(s - b)(s - c)}}{{{{(abc)}^2}}}} \\ = s \\\end{aligned} \end{equation} $$
which is equal to LHS.
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD