Binomial Theorem
    10.0 Use of calculus

10.0 Use of calculus
The questions in which the relation between binomial coefficients is to be proved, can be solved either using the properties of binomial coefficient or using calculus i.e., differentiation and integration which makes it easier to find the relation among the binomial coefficients.

1. Differentiation: This method is applied only when the numericals occur as the product of the binomial coefficients.
Differentiating ${(1 + x)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ... + {}^n{C_n}{x^n}$ on both sides, we get $$n{(1 + x)^{n - 1}} = {}^n{C_1} + 2{}^n{C_2}x + 3{}^n{C_3}{x^2} + ... + n{}^n{C_n}{x^{n - 1}}\quad ...(1)$$
Put $x=1$ in $(1)$, we get $$n{(2)^{n - 1}} = {}^n{C_1} + 2{}^n{C_2} + 3{}^n{C_3} + ... + n{}^n{C_n}$$
Put $x=-1$ in $(1)$, we get $$0 = {}^n{C_1} - 2{}^n{C_2} + 3{}^n{C_3} - ... + {( - 1)^{n - 1}}n{}^n{C_n}$$
On differentiating $(1)$ again and again we will have different results.



2. Integration: This method is applied only when the numericals occur as the denominator of the binomial coefficient.
Integrating ${(1 + x)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ... + {}^n{C_n}{x^n}$ on both sides, we get
$$\frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}} + {\text{constant (}}c'){ = ^n}{C_0}x + \frac{{^n{C_1}{x^2}}}{2} + \frac{{^n{C_2}{x^3}}}{3} + ... + \frac{{^n{C_n}{x^{n + 1}}}}{{n + 1}}...(2)$$
For $x=0$, we get $c' = - \frac{1}{{n + 1}}$. Put the value of $c'$ in equation $(1)$ $$\frac{{{{(1 + x)}^{n + 1}} - 1}}{{n + 1}}{ = ^n}{C_0}x + \frac{{^n{C_1}{x^2}}}{2} + \frac{{^n{C_2}{x^3}}}{3} + ... + \frac{{^n{C_n}{x^{n + 1}}}}{{n + 1}}...(3)$$
Put $x=1$ in equation $(3)$, we get $$\frac{{{{(2)}^{n + 1}} - 1}}{{n + 1}}{ = ^n}{C_0} + \frac{{^n{C_1}}}{2} + \frac{{^n{C_2}}}{3} + ... + \frac{{^n{C_n}}}{{n + 1}}$$
Put $x=-1$ in equation $(3)$, we get $$\frac{1}{{n + 1}} = {}^n{C_0} - \frac{{{}^n{C_1}}}{2} + \frac{{{}^n{C_2}}}{3} - ...$$
On integrating $(3)$ again and again we will have different results.


Question 10. If ${(1 + x)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {x^r}$ then prove that $${}^n{C_0} + 2{}^n{C_1} + 3{}^n{C_2} + ... + (n + 1){}^n{C_n} = {2^{n - 1}}(n + 2)$$

Solution: We have $${(1 + x)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ... + {}^n{C_n}{x^n}\quad ...(1)$$
Multiply $(1)$ with $x$, we get
$$x{(1 + x)^n} = {}^n{C_0}x + {}^n{C_1}{x^2} + {}^n{C_2}{x^3} + ... + {}^n{C_n}{x^{n + 1}}\quad ...(2)$$
Differentiating $(2)$ with respect to $x$, we get $${(1 + x)^n} + n{(1 + x)^{n - 1}}x = {}^n{C_0} + 2{}^n{C_1}x + 3{}^n{C_2}{x^2} + ... + (n + 1){}^n{C_n}{x^n}$$
Put $x=1$, we get $$\begin{equation} \begin{aligned} {(2)^n} + n{(2)^{n - 1}} = {}^n{C_0} + 2{}^n{C_1} + 3{}^n{C_2} + ... + (n + 1){}^n{C_n} \\ {2^{n - 1}}(n + 2) = {}^n{C_0} + 2{}^n{C_1} + 3{}^n{C_2} + ... + (n + 1){}^n{C_n} \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD