Gravitation
    8.0 Problem solving technique

8.0 Problem solving technique

Most of the problem of gravitation are solved by two conservation laws.

  1. Conservation of angular momentum
  2. Conservation of mechanical energy about the sun

Consider a planet of mass $m$ moving around the sun in an elliptical orbit is as shown in the figure.


Conserving angular momentum about the sun in aphelion and perihelion,

$${L_A} = {L_P}$$$$m{v_A}\left[ {a\left( {1 + e} \right)} \right] = m{v_P}\left[ {a\left( {1 - e} \right)} \right]$$$$\frac{{{v_P}}}{{{v_A}}} = \frac{{1 + e}}{{1 - e}}\quad ...(i)$$
Conserving mechanical energy about the sun in aphelion and perihelion,
$${E_A} = {E_P}$$$${U_A} + {K_A} = {U_P} + {K_P}$$$$ - \frac{{GMm}}{{a(1 + e)}} + \frac{1}{2}mv_A^2 = - \frac{{GMm}}{{a(1 - e)}} + \frac{1}{2}mv_P^2$$$$\frac{1}{2}m\left( {v_P^2 - v_A^2} \right) = \frac{{GMm}}{a}\left[ {\frac{1}{{(1 - e)}} - \frac{1}{{\left( {1 + e} \right)}}} \right]$$$$\frac{1}{2}m\left( {v_P^2 - v_A^2} \right) = \frac{{GMm\left( {2e} \right)}}{{a\left( {1 - {e^2}} \right)}}$$$$\left( {v_P^2 - v_A^2} \right) = \frac{{4eGM}}{{a\left( {1 - {e^2}} \right)}}\quad ...(ii)$$
From equation $(i)$ and $(ii)$ we get, $$v_P^2 - v_P^2\frac{{{{\left( {1 - e} \right)}^2}}}{{{{\left( {1 + e} \right)}^2}}} = \frac{{4eGM}}{{a\left( {1 - {e^2}} \right)}}$$$$\frac{{v_P^2{{\left( {1 + e} \right)}^2} - v_P^2{{\left( {1 - e} \right)}^2}}}{{{{\left( {1 + e} \right)}^2}}} = \frac{{4eGM}}{{a\left( {1 + e} \right)\left( {1 - e} \right)}}$$$$\frac{{4ev_P^2}}{{\left( {1 + e} \right)}} = \frac{{4eGM}}{{a\left( {1 - e} \right)}}$$$$v_P^2 = \frac{{GM\left( {1 + e} \right)}}{{a\left( {1 - e} \right)}}$$$${v_P} = \sqrt {\frac{{GM\left( {1 + e} \right)}}{{a\left( {1 - e} \right)}}} $$ Similarly, $${v_A} = \sqrt {\frac{{GM\left( {1 - e} \right)}}{{a\left( {1 + e} \right)}}} $$
Total energy of a planet, $${E_A} = {E_P} = E$$$$E = \frac{1}{2}mv_P^2 - \frac{{GMm}}{{a(1 - e)}}$$$$E = \frac{1}{2}m\left[ {\frac{{GM\left( {1 + e} \right)}}{{a\left( {1 - e} \right)}}} \right] - \frac{{GMm}}{{a(1 - e)}}$$$$E = \frac{{GMm}}{{2a\left( {1 - e} \right)}}\left( {1 + e - 2} \right)$$$$E = - \frac{{GMm}}{{2a}}$$
Therefore we get, $${v_P} = \sqrt {\frac{{GM\left( {1 + e} \right)}}{{a\left( {1 - e} \right)}}} $$ $${v_A} = \sqrt {\frac{{GM\left( {1 - e} \right)}}{{a\left( {1 + e} \right)}}} $$$$E = - \frac{{GMm}}{{2a}}$$
We can solve many problems of gravitation from the above three equations.

It is recommended to use the concept instead of formulas.

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD