Properties and Solution of Triangles
    10.0 Radius of the Ex-circles

10.0 Radius of the Ex-circles
An ex-circle or inscribed circle of a triangle is defined as the circle lying outside the triangle, tangent to one of its sides and


tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of this circle is called excentre relative to that vertex. As shown in the figure, the ex-centre of $A$ is represented as ${J_A}$, ex-centre of $B$ is represented as ${J_B}$ and ex-centre of $C$ is represented as ${J_C}$. The radius of such circles is called ex-radius.

If ${r_1}$,${r_2}$ and ${r_3}$ are the radii of the ex-circles of triangle $ABC$ opposite to the vertex $A$, $B$ and $C$. Radii of Ex-circle are given as $$\begin{equation} \begin{aligned} (i){r_1} = \frac{\Delta }{{s - a}},{r_2} = \frac{\Delta }{{s - b}},{r_3} = \frac{\Delta }{{s - c}} \\ (ii){r_1} = s\tan \frac{A}{2},{r_2} = s\tan \frac{B}{2},{r_3} = s\tan \frac{C}{2} \\ (iii){r_1} = \frac{{a\cos \frac{B}{2}\cos \frac{C}{2}}}{{\cos \frac{A}{2}}} \\ (iv){r_1} = 4R\sin \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} \\\end{aligned} \end{equation} $$
These formulae can be proved in the same manner as in case of radius of incircle.

Question 20. In a triangle $ABC$, prove that $${r_1} + {r_2} + {r_3} - r = 4R = 2a{\text{cosec}}A$$

Solution: Consider LHS, we have $$\begin{equation} \begin{aligned} {r_1} + {r_2} + {r_3} - r \\ \frac{\Delta }{{s - a}} + \frac{\Delta }{{s - b}} + \frac{\Delta }{{s - c}} - \frac{\Delta }{s} \\ \Delta \left( {\frac{1}{{s - a}} + \frac{1}{{s - b}}} \right) + \Delta \left( {\frac{1}{{s - c}} - \frac{1}{s}} \right) \\ \Delta \left[ {\left( {\frac{{s - b + s - a}}{{\left( {s - a} \right)\left( {s - b} \right)}}} \right) + \left( {\frac{{s - s + c}}{{s(s - c)}}} \right)} \right] \\\end{aligned} \end{equation} $$
Using $$2s = a + b + c$$ we get $$\begin{equation} \begin{aligned} \Delta \left[ {\left( {\frac{{2s - b - a}}{{\left( {s - a} \right)\left( {s - b} \right)}}} \right) + \left( {\frac{c}{{s(s - c)}}} \right)} \right] \\ \Delta \left[ {\left( {\frac{c}{{\left( {s - a} \right)\left( {s - b} \right)}}} \right) + \left( {\frac{c}{{s(s - c)}}} \right)} \right] \\ \Delta c\left[ {\left( {\frac{{s(s - c) + (s - a)(s - b)}}{{\left( {s - a} \right)\left( {s - b} \right)s(s - c)}}} \right)} \right] \\ \Delta c\left( {\frac{{2{s^2} - s(a + b + c) + ab}}{{{\Delta ^2}}}} \right) \\ \frac{{abc}}{\Delta } \\\end{aligned} \end{equation} $$
Using $$R = \frac{{abc}}{{4\Delta }}$$we get$$4R = 2a\cos ecA$$ as $$2R = \frac{a}{{\sin A}}$$

Question 21. In a triangle $ABC$, prove that $${r_1}{r_2} + {r_2}{r_3} + {r_3}{r_1} = {s^2}$$

Solution: Consider LHS, we have $$\begin{equation} \begin{aligned} {r_1}{r_2} + {r_2}{r_3} + {r_3}{r_1} \\ \left( {\frac{\Delta }{{s - a}} \times \frac{\Delta }{{s - b}}} \right) + \left( {\frac{\Delta }{{s - b}} \times \frac{\Delta }{{s - c}}} \right) + \left( {\frac{\Delta }{{s - c}} \times \frac{\Delta }{{s - a}}} \right) \\ {\Delta ^2}\left( {\frac{{(s - c) + (s - a) + (s - b)}}{{(s - a)(s - b)(s - c)}}} \right) \\ {\Delta ^2}\left( {\frac{{3s - (a + b + c)}}{{(s - a)(s - b)(s - c)}}} \right) \\ {\Delta ^2}\left( {\frac{s}{{(s - a)(s - b)(s - c)}}} \right) \\\end{aligned} \end{equation} $$
We know that $$\Delta = \sqrt {s(s - a)(s - b)(s - c)} $$
so $$ = {s^2}$$

Question 22. In a triangle $ABC$, prove that $$r{r_1} + r{r_2} + r{r_3} = ab + bc + ca - {s^2}$$

Solution: Consider LHS $$\begin{equation} \begin{aligned} r{r_1} + r{r_2} + r{r_3} \\ = \left( {\frac{\Delta }{s} \times \frac{\Delta }{{s - a}}} \right) + \left( {\frac{\Delta }{s} \times \frac{\Delta }{{s - b}}} \right) + \left( {\frac{\Delta }{s} \times \frac{\Delta }{{s - c}}} \right) \\ = \frac{{{\Delta ^2}}}{s}\left( {\frac{1}{{(s - a)}} + \frac{1}{{(s - b)}} + \frac{1}{{(s - c)}}} \right) \\ = \frac{{{\Delta ^2}}}{s}\left( {\frac{{(s - b)(s - c) + (s - c)(s - a) + (s - a)(s - b)}}{{(s - a)(s - b)(s - c)}}} \right) \\\end{aligned} \end{equation} ...(i) $$
we know that $$\Delta = \sqrt {s(s - a)(s - b)(s - c)} $$
so $(i)$ becomes $$\begin{equation} \begin{aligned} {s^2} - bs - cs + bc + {s^2} - cs - as + ac + {s^2} - as - bs + ab \\ ab + bc + ca - s(b + c + c + a + a + b) + 3{s^2} \\ ab + bc + ca - 2s(a + b + c) + 3{s^2} \\ ab + bc + ca - 4{s^2} + 3{s^2} \\ ab + bc + ca - {s^2} \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD