Matrices and Determinants
    9.0 Types of Linear Equations

9.0 Types of Linear Equations
(a) Consistent Equations: If Rank of $A$ =Rank of $C$ .
  • Unique Solution: If Rank of $A$ =Rank of $C$=$n$. where $n$ is number of unknowns .
  • Infinite Solution: If Rank of $A$ =Rank of $C$=$r$,where $r$<$n$.
(b) Inconsistent Equations: If Rank of $A$ $ \ne $ Rank of $C$,it has no solution.


Question 16.

Solve the following system of equations by Rank Method
$\begin{gathered} 5x + 3y + 7z = 4 \hspace{1em} \\ 3x + 26y + 2z = 9 \hspace{1em} \\ 7x + 2y + 10z = 5 \hspace{1em} \\ \end{gathered} $

Solution:

Consider $\left[ {\begin{array}{c} 5&3&7 \\ 3&{26}&2 \\ 7&2&{10} \end{array}} \right]\left[ {\begin{array}{c} x \\ y \\ z \end{array}} \right] = \left[ {\begin{array}{c} 4 \\ 9 \\ 5 \end{array}} \right]$
which is in the form $AX = B$ ...(1)

Where $A = \left[ {\begin{array}{c} 5&3&7 \\ 3&{26}&2 \\ 7&2&{10} \end{array}} \right]$ and Augumented Matrix= $K = \left[ {\begin{array}{c} 5&3&7&4 \\ 3&{26}&2&9 \\ 7&2&{10}&5 \end{array}} \right]$

= $K = \left[ {\begin{array}{c} 1&{3/5}&{7/5}&{4/5} \\ 3&{26}&2&9 \\ 7&2&{10}&5 \end{array}} \right]$ $\left[ {{R_1} \to 1/5{R_1}} \right]$

= $\left[ {\begin{array}{c} 1&{3/5}&{7/5}&{4/5} \\ 0&{121/5}&{ - 11/5}&{33/5} \\ 0&{ - 11/5}&{1/5}&{ - 3/5} \end{array}} \right]$ $\left[ {{R_2} \to {R_2} - 3{R_1},{R_3} \to {R_3} - 7{R_1}} \right]$

= $\left[ {\begin{array}{c} 1&{3/5}&{7/5}&{4/5} \\ 0&{121/5}&{ - 11/5}&{33/5} \\ 0&0&0&0 \end{array}} \right]$ $\left[ {{R_3} \to {R_3} + 1/11{R_2}} \right]$

Here, Rank ($A$) = Rank ($K$) $=2<3$

It implies that system is consistent and has infinite number of solutions.

The equation (1) reduces to $\left[ {\begin{array}{c} 1&{3/5}&{7/5}&{} \\ 0&{121/5}&{ - 11/5}&{} \\ 0&0&0&{} \end{array}} \right]\left[ {\begin{array}{c} x \\ y \\ z \end{array}} \right] = \left[ {\begin{array}{c} {4/5} \\ {33/5} \\ 0 \end{array}} \right]$
or

$\begin{gathered} x + 3/5y + 7/5z = 4/5 \hspace{1em} \\ \hspace{1em} \\ 121/5y - 11/5z = 33/5 \hspace{1em} \\ \hspace{1em} \\ 11y - z = 3 \hspace{1em} \\ \end{gathered} $

Let $Z$ = $k$, then

$\begin{gathered} y = 3/11 + k/11 \hspace{1em} \\ \hspace{1em} \\ \ and \ x = - 16/11k + 7/11 \hspace{1em} \\ \end{gathered} $

Since $k$ is arbitrary , hence the number of solutions is infinite.

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD