Reflection of Light
    4.0 Spherical mirror formulae

4.0 Spherical mirror formulae
For concave mirror

$CB$ is normal to the mirror at $B$.

From the laws of reflection i.e. angle of incidence is equal to the angle of reflection. So, $$\angle OBC = \angle IBC = \theta $$
In $\Delta OBC$, $$\alpha + \theta = \beta \quad ...(i)$$
In $\Delta IBC$, $$\beta + \theta = \gamma \quad ...(ii)$$
From equation $(i)$ and $(ii)$ we get, $$\alpha + \gamma = 2\beta \quad ...(iii)$$
Due to paraxial approximation,
\[\left. \begin{gathered} \alpha \approx \tan \alpha \hspace{1em} \\ \beta \approx \tan \beta \hspace{1em} \\ \gamma \approx \tan \gamma \hspace{1em} \\ P' \approx P \hspace{1em} \\ \end{gathered} \right\}\quad ...(iv)\]
From equation $(iii)$ and $(iv)$ we get, $$\tan \alpha + \tan \gamma = 2\tan \beta $$ or $$\frac{{BP'}}{{OP'}} + \frac{{BP'}}{{IP'}} = 2\left( {\frac{{BP'}}{{CP'}}} \right)\quad ...(v)$$

Applying sign convention,

$$\begin{equation} \begin{aligned} OP' = - u \\ IP' = - v \\ CP' = - R \\\end{aligned} \end{equation} $$
So, $$\begin{equation} \begin{aligned} \frac{{BP'}}{{ - u}} + \frac{{BP'}}{{ - v}} = 2\left( {\frac{{BP'}}{{ - R}}} \right) \\ \frac{1}{v} + \frac{1}{u} = \frac{2}{R} \\\end{aligned} \end{equation} $$ As $f = \frac{R}{2}$. So, $$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

For convex mirror

In $\Delta CMO$, $$\alpha + \beta = \theta \quad ...(i)$$
In $\Delta IMO$, $$\alpha + \gamma = 2\theta \quad ...(ii)$$
From equation $(i)$ and $(ii)$ we get, $$\alpha + 2\beta = \gamma $$ or $$\gamma - \alpha = 2\beta \quad ...(iii)$$
Due to paraxial approximation,
\[\left. \begin{gathered} \alpha \approx \tan \alpha \hspace{1em} \\ \beta \approx \tan \beta \hspace{1em} \\ \gamma \approx \tan \gamma \hspace{1em} \\ \end{gathered} \right\}\quad ...(iv)\]
From equation $(iii)$ and $(iv)$ we get, $$\tan \gamma - \tan \alpha = 2\tan \beta $$ or $$\frac{{MP}}{{IP}} - \frac{{MP}}{{OP}} = 2\left( {\frac{{MP}}{{CP}}} \right)\quad ...(v)$$
Applying sign convention,

$$\begin{equation} \begin{aligned} PI = + v \\ OP = - u \\ PC = + R \\\end{aligned} \end{equation} $$
So, $$\begin{equation} \begin{aligned} \frac{{MP}}{v} - \frac{{MP}}{{ - u}} = 2\left( {\frac{{MP}}{R}} \right) \\ \frac{1}{v} + \frac{1}{u} = \frac{2}{R} \\\end{aligned} \end{equation} $$ As $f = \frac{R}{2}$. So, $$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

Note:
  • The focal length of a spherical mirror of radius $R$ is negative for concave mirror or converging mirror.
  • The focal length of a spherical mirror of radius $R$ is positive for convex mirror or diverging mirror.
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD