Maths > Differentiation > 3.0 Properties of Differentiation

  Differentiation
    1.0 Differentiation
    2.0 Some Basic Differentiation formulae
    3.0 Properties of Differentiation
    4.0 Derivative of Common Functions
    5.0 Explicit and Implicit form:
    6.0 Parametric Differentiation
    7.0 Differentiation of one function w.r.t other
    8.0 Matrix Differentiation
    9.0 Logarathimic Differentiation
    10.0 Differentiation using substitution

3.4 Chain Rule
$$\left( {fog(x)} \right)' = g'(x)f'(g(x))$$$$\frac{{dy}}{{dx}} = \frac{{dy}}{{du}}\frac{{du}}{{dx}}$$ Proof :
$$ {\left( {fog\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to o} \frac{{fog\left( {x + h} \right) - fog\left( x \right)}}{h} $$$$ {\left( {fog\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to o} \frac{{f\left( {g\left( {x + h} \right)} \right) - f\left( {g\left( x \right)} \right)}}{h} $$
Since $g$ is differentiable at $x$,
$$ v = \frac{{g\left( {x + h} \right) - g\left( x \right)}}{h} - g'\left( x \right) $$$$ g\left( {x + h} \right) = g\left( x \right) + \left( {v + g'\left( x \right)} \right)h $$
with $$\mathop {\lim }\limits_{h \to 0} v = 0$$ Similarly,
$$ f\left( {y + h} \right) = f\left( y \right) + \left( {w + f'\left( y \right)} \right)k $$
with $$\mathop {\lim }\limits_{k \to 0} w = 0$$
In particular $y = g\left( x \right)$ and $k = \left( {v + g'\left( x \right)} \right)h$
$$ f\left( {g\left( x \right) + \left( {v + g'\left( x \right)} \right)h} \right) = f\left( {g\left( x \right)} \right) + \left( {w + f'\left( {g\left( x \right)} \right)} \right)\left( {v + g'\left( x \right)} \right)h $$
Hence,
$$ f\left( {g\left( {x + h} \right)} \right) - f\left( {g\left( x \right)} \right) = f\left( {g\left( x \right) + \left( {v + g'\left( x \right)} \right)h} \right) - f\left( {g\left( x \right)} \right) $$$$ f\left( {g\left( {x + h} \right)} \right) - f\left( {g\left( x \right)} \right) = f\left( {g\left( x \right)} \right) + \left( {w + f'\left( {g\left( x \right)} \right)} \right)\left( {v + g'\left( x \right)} \right)h - f\left( {g\left( x \right)} \right) $$$$ f\left( {g\left( {x + h} \right)} \right) - f\left( {g\left( x \right)} \right) = \left( {w + f'\left( {g\left( x \right)} \right)} \right)\left( {v + g'\left( x \right)} \right)h $$$$ {\left( {fog\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to o} \frac{{f\left( {g\left( {x + h} \right)} \right) - f\left( {g\left( x \right)} \right)}}{h} $$$$ {\left( {fog\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to o} \left( {w + f'\left( {g\left( x \right)} \right)} \right)\left( {v + g'\left( x \right)} \right) = f'\left( {g\left( x \right)} \right)g'\left( x \right) $$



Example 7: $ h(x) = (1+x^2)^{100}$ Justify $\left( {fog(x)} \right)' = g'(x)f'(g(x))$

Solution: Here, $$f(x) = x^{100}$$ $$g(x) = 1+x^2$$
We know that, $$\frac{d}{dx}x^n = nx^{n-1}$$ $$f'(x) = 100 x^{100-1} = 100 x^{99}$$
$$f'(g(x)) = f'(1+x^2) = 100 (1+x^2)^{99}$$ Using sum rule, $$g'(x) = 2x$$
Let $h(x) = fog(x)$,
$$h'(x) = {\left( {fog(x)} \right)^\prime } = 2x(100){(1 + {x^2})^{99}} = 200x{(1 + {x^2})^{99}}$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD