Maths > Differentiation > 3.0 Properties of Differentiation

  Differentiation
    1.0 Differentiation
    2.0 Some Basic Differentiation formulae
    3.0 Properties of Differentiation
    4.0 Derivative of Common Functions
    5.0 Explicit and Implicit form:
    6.0 Parametric Differentiation
    7.0 Differentiation of one function w.r.t other
    8.0 Matrix Differentiation
    9.0 Logarathimic Differentiation
    10.0 Differentiation using substitution

3.2 Product Rule:
$$ \frac{d}{dx} \left( f(x) g(x) \right) = g(x) \frac{d}{dx} f(x) + f(x) \frac{d}{dx} g(x) $$ Proof:

$$\begin{equation} \begin{aligned} {\left( {f\left( x \right)g\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {f\left( {x + h} \right)g\left( {x + h} \right)} \right) - \left( {f\left( x \right)g\left( x \right)} \right)}}{h} \\ \end{aligned} \end{equation} $$ Add and subtract $f\left( {x + h} \right)g\left( x \right)$ in numerator,
$${\left( {f\left( x \right)g\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {f\left( {x + h} \right)g\left( {x + h} \right)} \right) - f\left( {x + h} \right)g\left( x \right)\, + f\left( {x + h} \right)g\left( x \right)\, - \left( {f\left( x \right)g\left( x \right)} \right)}}{h} $$ $$ {\left( {f\left( x \right)g\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {f\left( {x + h} \right)g\left( {x + h} \right) - f\left( {x + h} \right)g\left( x \right)} \right) + \left( {f\left( {x + h} \right)g\left( x \right)\, - f\left( x \right)g\left( x \right)} \right)}}{h} $$ $$ {\left( {f\left( x \right)g\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right)\left( {g\left( {x + h} \right) - g\left( x \right)} \right) + g\left( x \right)\left( {f\left( {x + h} \right)\, - f\left( x \right)} \right)}}{h} $$ $$ {\left( {f\left( x \right)g\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{f\left( {x + h} \right)\left( {g\left( {x + h} \right) - g\left( x \right)} \right)}}{h} + \frac{{g\left( x \right)\left( {f\left( {x + h} \right)\, - f\left( x \right)} \right)}}{h}} \right) $$ $$ {\left( {f\left( x \right)g\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{f\left( {x + h} \right)\left( {g\left( {x + h} \right) - g\left( x \right)} \right)}}{h}} \right) + \mathop {\lim }\limits_{h \to 0} \left( {\frac{{g\left( x \right)\left( {f\left( {x + h} \right)\, - f\left( x \right)} \right)}}{h}} \right) $$ $$ {\left( {f\left( x \right)g\left( x \right)} \right)^\prime } = \mathop {\lim }\limits_{h \to 0} \left( {f\left( {x + h} \right)\frac{{\left( {g\left( {x + h} \right) - g\left( x \right)} \right)}}{h}} \right) + \mathop {\lim }\limits_{h \to 0} \left( {g\left( x \right)\frac{{\left( {f\left( {x + h} \right)\, - f\left( x \right)} \right)}}{h}} \right) $$ $$ {\left( {f\left( x \right)g\left( x \right)} \right)^\prime } = f\left( x \right)g'\left( x \right) + g\left( x \right)f'\left( x \right)$$



Example 4. $f(x)= x^3 $ and $g(x) = x^4$ prove $ \frac{d}{dx} \left( f(x) g(x) \right) = g(x) \frac{d}{dx} f(x) + f(x) \frac{d}{dx} g(x) $

Solution: Given: $$f(x)= x^3 $$ $$g(x) = x^4$$ $$f(x) g(x) = x^3 (x^4) = x^7$$
L.H.S: $$\frac{{d}}{{dx}}\left( f(x) g(x) \right) = \frac{d}{dx} x^7$$
Since we know that, $$\frac{d}{dx}x^n = nx^{n-1}$$
$$\frac{d}{dx} x^7 = 7x^{7-1} = 7x^6$$
R.H.S: $$g(x) \frac{d}{dx} f(x) + f(x) \frac{d}{dx} g(x) = x^4 \frac{d}{dx}x^3 + x^3 \frac{d}{dx}x^4 $$
Since we know that, $$\frac{d}{dx}x^n = nx^{n-1}$$
$$ x^4 \frac{d}{dx}x^3 + x^3 \frac{d}{dx}x^4 = x^4 (3x^{3-1}) + x^3 (4x^{4-1}) $$ $$x^4 \frac{d}{dx}x^3 + x^3 \frac{d}{dx}x^4 =x^4 (3x^2) + x^3(4x^3) = 3x^6+ 4x^6 =7x^6$$
thus, L.H.S = R.H.S

Note: $$ \frac{d}{dx} \left( f(x) g(x) \right) \ne \frac{d}{dx} f(x) \frac{d}{dx} g(x) $$


Example 5: $f(x)= 9x^3$ and $g(x) = 2$ prove $ \frac{d}{dx} \left( f(x) g(x) \right) \ne \frac{d}{dx} f(x) \frac{d}{dx} g(x) $

Solution: Given: $$f(x)= 9x^3 $$ $$g(x) = 2$$ $$f(x) g(x) = (9x^3)2 = 18 x^3$$
L.H.S: $$\frac{{d}}{{dx}}\left( f(x) g(x) \right) = \frac{d}{dx} 18x^3$$ Since, we know that $$\frac{d}{dx}x^n = nx^{n-1}$$
$$\frac{d}{dx} 18 x^3 = 18 (3)x^{3-1} = 54 x^2$$
R.H.S: $$ \frac{d}{dx} f(x) \frac{d}{dx} g(x) = \frac{d}{dx}(9x) \frac{d}{dx}(2) $$ Using Scalar diffeerentiation,

Also we know that, $$\frac{d}{dx}x^n = nx^{n-1}$$ $$\frac{d}{dx}k=0 \quad where \; k = \; constant $$ $$\frac{d}{dx}(9x) \frac{d}{dx}(2) = 9 \frac{d}{dx}x (0) $$ $$\frac{d}{dx}(9x) \frac{d}{dx}(2) = 9 x^{1-1} (0) = 9(0) = 0$$
Thus L.H.S $\ne$ R.H.S

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD