Maths > Functions > 1.0 Definitions

  Functions
    1.0 Definitions
    2.0 Relation
    3.0 Types of Relation
    4.0 Functions
    5.0 Standard Real Functions and their Graphical Representation
    6.0 Operations on Real Functions
    7.0 Types of Functions
    8.0 Composition of a Function
    9.0 Inverse of a Function

1.1 Cartesian Product of Sets
Let $A$ and $B$ be two non-empty sets. The sets of all ordered pairs $(a,b)$ such that $a \in A$ and $b \in B$ is called the cartesian product of the sets $A$ and $B$ and is denoted by $A \times B$.
$$A \times B = \{ (a,b):\;\;a \in A\;\;and\;\;b \in B\} $$
and
$$B \times A = \{ (b,a):\;\;a \in A\;\;and\;\;b \in B\} $$
$$If\;\;A = \emptyset \;\;or\;\;B = \emptyset ,\;\;then\;\;A \times B = \emptyset $$


Example 3. Write the Cartesian products as defined below for the sets

$A = \{ x:x\;is\;a\;odd\;natural\;number\;less\;than\;10\} $ and $B = \{ x:x\;is\;divisible\;by\;three\;and\;less\;than\;10\} $

i. $A \times B$
ii. $B \times A$
iii.$B \times B$
iv. $A \times A$

Solution:

$\begin{equation} \begin{aligned} From\;the\;definition, \\ A = \{ 1,3,5,7,9\} \\ B = \{ 3,6,9\} \\\end{aligned} \end{equation} $

$i.\;A \times B = \{ (1,3),(1,6),(1,9),(3,3),(3,6),(3,9),(5,3),(5,6),(5,9),(7,3),(7,6),(7,9),(9,3),(9,6),(9,9)\}$

$ii.\;A \times B =\{ (3,1),(3,3),(3,5),(3,7),(3,9),(6,1),(6,3),(6,5),(6,7),(6,9),(9,1),(9,3),(9,5),(9,7),(9,9)\}$

$iii.\;B \times B = \{ (3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9)\}$

$iv.\;A \times A = \{ (1,1),(1,3),(1,5),(1,7),(1,9),(3,1),(3,3),(3,5),(3,7),(3,9),(5,1),(5,3),(5,5),(5,7),(5,9),$
$(7,1),(7,3),(7,5),(7,7),(7,9),(9,1),(9,3),(9,5),(9,7),(9,9)\}$


Example 4. Find $A$ and $B$ if

i. $A \times B = \{ (1,a),(2,a),(1,e),(2,e),(3,a),(3,e)\} $
ii.$B \times A = \{ (a,e),(a,i),(o,e),(o,i),(u,e),(u,i)\} $
iii. $A \times B = \emptyset $
iv. $A \times B = B \times A = \{ (1,1)\} $

Solution: $In\;A \times B,\;the\;element,\;(a,b),\;is\;such\;that\;a \in A\;and\;b \in B$

$\begin{equation} \begin{aligned} i.\;A \times B = \{ (1,a),(2,a),(1,e),(2,e),(3,a),(3,e)\} \\ By\;definition,\; \\ A = \{ 1,2,3\} \;\;and\;\;B = \{ a,e\} \\\end{aligned} \end{equation} $


$\begin{equation} \begin{aligned} ii.\;B \times A = \{ (a,e),(a,i),(o,e),(o,i),(u,e),(u,i)\} \\ By\;definition, \\ B = \;\{ a,o,u\} \;and\;A = \{ e,i\} \\\end{aligned} \end{equation} $


$\begin{equation} \begin{aligned} iii.\;A \times B = \emptyset \\ Since,\;the\;cartesian\;product\;is\;a\;null\;set,\;either\;A\;is\;a\,null\;set\;or\;B\;is\;a\;null\;set\\\end{aligned} \end{equation} $


$\begin{equation} \begin{aligned} iv.\;A \times B = B \times A = \{ (1,1)\} \\ A \times B = B \times A \Rightarrow A = B \\ A = B = \{ 1\} \\\end{aligned} \end{equation} $


Cartesian Product of Three Sets:

Let $A$, $B$ and $C$ be three sets. Then, $A \times B \times C$ is the set of all ordered triplets having first element from $A$, second element from $B$, and third element from $C$.
$$A \times B \times C = \{ (a,b,c):\;a \in A,\;\;b \in B\;\;and\;\;c \in C\} $$


Example 5. Write cartesian products of the following, $A = \{ a,e,i\} $, $B = \{ 2,4\} $ and $C = \{ x,y\} $
$i.A \times B \times C$ $ii.B \times A \times C$ $iii.B \times B \times C$

Solution: Given

$\begin{equation} \begin{aligned} A = \{ a,e,i\} \\ B = \{ 2,4\} \\ C = \{ x,y\} \\\end{aligned} \end{equation} $

$i.A \times B \times C$
$$\begin{equation} \begin{aligned} A \times B \times C = \{ (a,2,x),(a,2,y),(a,4,x),(a,4,y), \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(e,2,x),(e,2,y),(e,4,x),(e,4,y), \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(i,2,x),(i,2,y),(i,4,x),(i,4,y)\} \\\end{aligned} \end{equation} $$


$ii.\;B \times A \times C$
$$\begin{equation} \begin{aligned} B \times A \times C = \{ (2,a,x),(2,a,y),(4,a,x),(4,a,y), \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2,e,x),(2,e,y),(4,e,x),(4,e,y), \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2,i,x),(2,i,y),(4,i,x),(4,i,y)\} \\\end{aligned} \end{equation} $$


$iii.\;B \times B \times C$
$$\begin{equation} \begin{aligned} B \times B \times C = \{ (2,2,x),(2,2,y),(2,4,x),(2,4,y), \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(4,2,x),(4,2,y),(4,4,x),(4,4,y)\} \\\end{aligned} \end{equation} $$


Example 6. Find $A$, $B$ and $C$ from the following cartesian products given,

$i.$ $A \times B \times C = \{ (e,2,h),(e,2,s),(i,2,h),(i,2,s)\} $
$ii.$ $C \times B \times C = \{ (1,2,1),(1,3,1),(2,2,2),(2,3,2)\} $
$iii.$ $A \times B \times C = \emptyset $

Solution:

$i.$ $A \times B \times C = \{ (e,2,h),(e,2,s),(i,2,h),(i,2,s)\} $ $$\begin{equation} \begin{aligned} A = \{ e,i\} \\ B = \{ 2\} \\ C = \{ h,s\} \\\end{aligned} \end{equation} $$


$ii.$ $C \times B \times C = \{ (1,2,1),(1,3,1),(2,2,2),(2,3,2)\} $ $$\begin{equation} \begin{aligned} B = \{ 2,3\} \\ C = \{ 1,2\} \\\end{aligned} \end{equation} $$


$iii.$ $A \times B \times C = \emptyset $


Since the product is an empty set, either of the sets is an empty set, i.e. either $A = \emptyset $, or $B = \emptyset $ or $C = \emptyset $.


Number of Elements in the Cartesian Product of Two Sets:
Theorem: If $A$ and $B$ are two finite sets, then $n(A \times B) = n(A) \times n(B)$.

Proof: Let $A = \{ {a_1},{a_2},{a_3},....,{a_m}\} $ and $B = \{ {b_1},{b_2},{b_3},....,{b_n}\} $ be two sets having $m$ and $n$ elements respectively. Then,
$$\begin{equation} \begin{aligned} A \times B = [({a_1},{b_1}),({a_1},{b_2}),({a_1},{b_3}),......,({a_1},{b_n}) \\ \;\;\;\;\;\;\;\;\;\;\;\;({a_2},{b_1}),({a_2},{b_2}),({a_2},{b_3}),......,({a_2},{b_n}) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \vdots \;\;\;\;\;\;\;\;\;\; \vdots \;\;\;\;\;\;\;\;\;\; \vdots \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \vdots \\ \;\;\;\;\;\;\;\;\;\;\;\;({a_m},{b_1}),({a_m},{b_2}),({a_m},{b_3}),......,({a_m},{b_n})] \\\end{aligned} \end{equation} $$

Clearly, there are $m$ rows of order pairs and each row has $n$ distinct ordered pairs.

So, $A \times B$ has $mn$ elements.

Thus, $A = \{ {a_1},{a_2},{a_3},....,{a_m}\} $ and $B = \{ {b_1},{b_2},{b_3},....,{b_n}\} $

Some special cases:

  • If either $A$ or $B$ is an infinite set, then $A \times B$ is an infinite set.

  • If $A$, $B$, $C$ are finite sets, then $n(A \times B \times C) = n(A) \times n(B) \times n(C)$



Example 7. Find the number of elements in each of the following

$\begin{equation} \begin{aligned} i.\;A = \{ 2,3,1,9\} \\ B = \{ a,v\} \\ n(A \times B) = ? \\\end{aligned} \end{equation} $$\begin{equation} \begin{aligned} ii.\;A = \{ x,y\} \\ n(A \times B) = 6 \\ n(B) = ? \\\end{aligned} \end{equation} $$\begin{equation} \begin{aligned} iii.\;n(A \times B) = 18 \\ n(B)\;and\;n(B) \\ (All\;possible\;values) \\\end{aligned} \end{equation} $
$\begin{equation} \begin{aligned} iv.\;n(A \times B \times C) = 39 \\ n(A),\,\;n(B)\;and\;n(C) \\\end{aligned} \end{equation} $$v.\;n(A \times B \times C) = 0$$vi.\;n(A \times B \times C) = 1$

Solution:
$\begin{equation} \begin{aligned} i.\;A = \{ 2,3,1,9\} \\ B = \{ a,v\} \\ n(A \times B) = ? \\\end{aligned} \end{equation} $
$\begin{equation} \begin{aligned} n(A) = 4 \\ n(B) = 2 \\ Thus, \\ n(A \times B) = n(A) \times n(B) \\ n(A \times B) = 2 \times 4 = 8 \\\end{aligned} \end{equation} $

$\begin{equation} \begin{aligned} ii.\;A = \{ x,y\} \\ n(A \times B) = 6 \\ n(B) = ? \\\end{aligned} \end{equation} $
$\begin{equation} \begin{aligned} n(B) = 2 \\ n(A \times B) = 6 \\ Since, \\ n(A \times B) = n(A) \times n(B) \\ n(A) = {{n(A \times B)} \over {n(B)}} = {6 \over 2} \\ Thus, \\ n(A) = 3 \\\end{aligned} \end{equation} $


$\begin{equation} \begin{aligned} iii.\;n(A \times B) = 18 \\ n(B)\;and\;n(B) \\ (All\;possible\;values) \\\end{aligned} \end{equation} $
$\begin{equation} \begin{aligned} Since, \\ n(A \times B) = n(A) \times n(B) \\ n(A) \times n(B) = 18 \\\end{aligned} \end{equation} $

The possible sizes of the sets are,

$n(A)$$n(B)$
118
29
36
63
92
181



$v.\;n(A \times B \times C) = 0$

$\begin{equation} \begin{aligned} iv.\;n(A \times B \times C) = 39 \\ n(A),\,\;n(B)\;and\;n(C) \\\end{aligned} \end{equation} $

$$\begin{equation} \begin{aligned} Since, \\ n(A \times B \times C) = n(A) \times n(B) \times n(C) \\ n(A) \times n(B) \times n(C) = 39 \\\end{aligned} \end{equation} $$

The possible sizes of the sets are,

$n(A)$$n(B)$$n(C)$
1313
1133
3131
1331
1313
3113
1139
1391
3911


$$\begin{equation} \begin{aligned} n(A \times B \times C) = 0 \Rightarrow A \times B \times C = \emptyset \\ Since,\,\;A \times B \times C = \emptyset \\ Either\;A\;or\;B\;or\;C\;is\;a\;null\;set \\ Thus,\;size\;of\;the\;sets\;cannot\;be\;defined. \\\end{aligned} \end{equation} $$



$vi.\;n(A \times B \times C) = 1$

$$\begin{equation} \begin{aligned} n(A \times B \times C) = 1 \\ \Rightarrow n(A) \times n(B) \times n(C) = 1 \\ \Rightarrow n(A) = n(B) = n(C) = 1 \\\end{aligned} \end{equation} $$



Graphical representation of Cartesian product of sets

If $A$ and $B$ are two non-empty sets, then the Cartesian $A \times B$ is represented as shown in figure.

Let $A = \{ p,q\} $ and $B = \{ r\} $

Therefore, number of elements in $A$ i.e., $n(A)=2$ and number of elements in $B$ i.e., $n(B)=1$

$$\therefore n(A \times B) = 2 \times 1 = 2$$

From the figure, we can conclude that the set of ordered pair is $$A \times B = \left\{ {p,q} \right\} \times \left\{ k \right\} = \left\{ {\left( {p,k} \right),\left( {q,k} \right)} \right\}$$




Diagrammatic representation of cartesian product of sets

If $A$ and $B$ are two non-empty sets, then the diagrammatic representation of $A \times B$ is as follows.

Step 1: Draw two disjoint Venn diagram for each of the two sets, $A$ and $B$.

Step 2: List down the elements of each vertically.

Step 3: Join every element in $A$ to every element in $B$.

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD