Maths > Parabola > 7.0 Parametric Co-ordinates

  Parabola
    1.0 Conic Section
    2.0 Parabola
    3.0 Standard equation of Parabola
    4.0 Focal distance of a point
    5.0 General equation of Parabola
    6.0 The generalized form of parabola: ${\left( {y - k} \right)^2} = 4a\left( {x - h} \right)$
    7.0 Parametric Co-ordinates
    8.0 Equation of tangent to a parabola
    9.0 Point of intersection of tangents at any two points on the parabola
    10.0 Equation of normal to the parabola
    11.0 Relation between parametric coefficients if normal meets parabola
    12.0 Important relations
    13.0 Circle through co-normal points
    14.0 Chord of contact

7.2 Important Results
1. Harmonic mean of the segment of the focal chord is equal to the length of semi-latus rectum i.e., $$\frac{{2 \times SP \times SQ}}{{SP + SQ}} = 2a$$
Proof: Let us assume that the equation of parabola be ${y^2} = 4ax$. $PQ$ be the focal chord with coordinates $P(a{t_1}^2,2a{t_1})$ and $Q(a{t_2}^2,2a{t_2})$. The coordinates of focus is $S(a,0)$.
Apply distance formulae between point $P$ and $S$, we get $$SP = \sqrt {{{\left( {a{t_1}^2 - a} \right)}^2} + {{\left( {2a{t_1} - 0} \right)}^2}} = \sqrt {{a^2}{t_1}^4 + {a^2} - 2{a^2}{t_1}^2 + 4{a^2}{t_1}^2} = a{t_1}^2 + a$$
Similarly, $$SQ = a{t_2}^2 + a$$
So, the harmonic mean of the segment of the focal chord is



$$\frac{{2 \times SP \times SQ}}{{SP + SQ}} = \frac{{2 \times \left( {a{t_1}^2 + a} \right) \times \left( {a{t_2}^2 + a} \right)}}{{\left( {a{t_1}^2 + a} \right) + \left( {a{t_2}^2 + a} \right)}}$$ $$ = \frac{{2{a^2}\left( {{t_1}^2 + 1} \right)\left( {{t_2}^2 + 1} \right)}}{{a\left( {{t_1}^2 + 1 + {t_2}^2 + 1} \right)}}$$ $$ = \frac{{2a\left( {{t_1}^2 + {t_2}^2 + 2{{({t_1}{t_2})}^2}} \right)}}{{\left( {{t_1}^2 + 1 + {t_2}^2 + 1} \right)}}$$
From parametric relation between the coordinates of the ends of a focal chord, we get $${t_1}{t_2} = - 1$$
Therefore, $$\frac{{2 \times SP \times SQ}}{{SP + SQ}} = 2a$$

2. If a focal chord makes an angle with the axis of parabola then the length of focal chord is $$4a{\bf{cose}}{{\bf{c}}^2}\alpha $$
Proof: Let us assume that the end points of a focal chord which makes an angle $\alpha $ with the axis of parabola be $P(a{t_1}^2,2a{t_1})$ and $Q(a{t_2}^2,2a{t_2})$ $$\tan \alpha = slope{\text{ }}of{\text{ }}PQ$$ $$ = \frac{{2a{t_2} - 2a{t_1}}}{{a{t_2}^2 - a{t_1}^2}} = \frac{2}{{{t_2} + {t_1}}}$$ or, $${t_2} + {t_1} = 2\cot \alpha ...(1)$$

Length of focal chord using distance formulae is $$PQ = a{\left( {{t_2} - {t_1}} \right)^2}$$ $$ = a\left[ {{{\left( {{t_2} + {t_1}} \right)}^2} - 4{t_1}{t_2}} \right]{\text{ }}\left( {\because {t_1}{t_2} = - 1} \right)$$ $$ = a\left[ {{{\left( {{t_2} + {t_1}} \right)}^2} + 4} \right]$$
Put the value of ${t_2} + {t_1}$ from equation $(1)$, we get $$PQ = a\left( {4{{\cot }^2}\alpha + 4} \right)$$ $$ = 4a{\text{cose}}{{\text{c}}^2}\alpha $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD