Maths > Vectors > 8.0 Products of a Vector

  Vectors
    1.0 Introduction
    2.0 Types of Vectors
    3.0 Addition of Vectors
    4.0 Components of a Vector
    5.0 Vector Joining Two Points
    6.0 Projection of a Vector on a Line
    7.0 Section Formula
    8.0 Products of a Vector
    9.0 Lami's Theorem
    10.0 Linear Combination of Vectors
    11.0 Linearly Dependent and Independent Vectors
    12.0 Scalar Triple Product
    13.0 Vector Triple Product

8.1 Scalar (or dot) products of two vectors

The scalar products of two non zero vectors namely $\overrightarrow a ,\overrightarrow b $, is denoted by $\overrightarrow a .\overrightarrow b $ which is defined as $$\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a \,} \right|\left| {\overrightarrow b } \right|\cos \theta $$
where $\theta $ is the angle between vector $\overrightarrow a ,\overrightarrow b $, varies as $0 \leqslant \theta \leqslant \pi $. If either $\overrightarrow a or \overrightarrow b $ becomes $0$ then $\theta $ is undefined and the value of $\overrightarrow a .\overrightarrow b $ becomes $0$.




Properties

Property 1: $\overrightarrow a .\overrightarrow b $ is a real number.

Property 2: If the value of $\overrightarrow a .\overrightarrow b $ is zero for the non zero vector then it implies that the vectors are perpendicular to each other.

Note: Condition for perpendicularity of vectors $\overrightarrow a .\overrightarrow b = 0$.

Property 3: Scalar product is commutative in nature i.e., $\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow a $.

Property 4: The angle between two vectors is given as $$\cos \theta = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a \,} \right|\left| {\overrightarrow b } \right|}}$$

Property 5: $\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a \,} \right|^2}$

Property 6: When vectors are parallel i.e., $\theta=0 $, then $$\begin{equation} \begin{aligned} \overrightarrow a .\overrightarrow b = \left| {\overrightarrow a \,} \right|\left| {\overrightarrow b } \right|\cos 0 \\ \overrightarrow a .\overrightarrow b = \left| {\overrightarrow a \,} \right|\left| {\overrightarrow b } \right| \\\end{aligned} \end{equation} $$

Property 7: When vectors are antiparallel i.e., $\theta = \pi $ then $$\overrightarrow a .\overrightarrow b = - \left| {\overrightarrow a \,} \right|\left| {\overrightarrow b } \right|$$

Property 8: For mutually perpendicular vectors $\widehat i,\widehat j,\widehat k$, $$\begin{equation} \begin{aligned} \widehat {i.}\widehat i = 1,\widehat j.\widehat j = 1,\widehat k.\widehat k = 1 \\ \widehat i.\widehat j = 0,\widehat j.\widehat k = 0,\widehat k.\widehat i = 0 \\\end{aligned} \end{equation} $$


Property 9: Scalar product is distributive

Proof: Let $\overrightarrow a ,\overrightarrow {b,} \overrightarrow c $ be three vectors then $$\overrightarrow a .(\overrightarrow b + \overrightarrow c ) = \overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c $$
If three vectors are given in the component form $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$$$\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k$$$$\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k\,$$
so considering LHS, we have $$\overrightarrow a .(\overrightarrow b + \overrightarrow c )$$$$\begin{equation} \begin{aligned} ({a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k).\{ ({b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k) + ({c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k)\} \\ ({a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k).\{ ({b_1} + {c_1})\widehat i + ({b_2} + {c_2})\widehat j + ({b_3} + {c_3})\widehat k\} \\ {a_1}({b_1} + {c_1}) + {a_2}({b_2} + {c_2}) + {a_3}({b_3} + {c_3}) \\ ({a_1}{b_1} + {a_1}{c_1}) + ({a_2}{b_2} + {a_2}{c_2}) + ({a_3}{b_3} + {a_3}{c_3}) \\\end{aligned} \end{equation} $$
Now considering RHS, we have $$\overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c $$$$\begin{equation} \begin{aligned} \{ ({a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k).({b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k)\} + \{ ({a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k).({c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k)\} \\ ({a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}) + ({a_1}{c_1} + {a_2}{c_3} + {a_3}{c_3}) \\ ({a_1}{b_1} + {a_1}{c_1}) + ({a_2}{b_2} + {a_2}{c_3}) + ({a_3}{b_3} + {a_3}{c_3}) \\ \\\end{aligned} \end{equation} $$

Property 10: Let $\overrightarrow a ,\overrightarrow b $ are two vectors and $\lambda $ be any scalar then
$$\lambda (\overrightarrow a .\overrightarrow b ) = (\lambda \overrightarrow a ).\overrightarrow b = \overrightarrow a .(\lambda \overrightarrow b )$$

Proof: $$\begin{equation} \begin{aligned} \lambda (\overrightarrow a .\overrightarrow b ) = \lambda ({a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}) \\ (\lambda \overrightarrow a ).\overrightarrow b = (\lambda {a_1}\widehat i + \lambda {a_2}\widehat j + \lambda {a_3}\widehat k).({b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k) \\ (\lambda \overrightarrow a ).\overrightarrow b = \lambda {a_1}{b_1} + \lambda {a_2}{b_2} + \lambda {a_3}{b_3} \\ (\lambda \overrightarrow a ).\overrightarrow b = \lambda ({a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}) \\ \lambda \overrightarrow a .(\overrightarrow b ) = \lambda ({a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k).({b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k) \\ \overrightarrow a .(\lambda \overrightarrow b ) = ({a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k).(\lambda {b_1}\widehat i + \lambda {b_2}\widehat j + \lambda {b_3}\widehat k) \\ \overrightarrow a .(\lambda \overrightarrow b ) = {a_1}\lambda {b_1} + {a_2}\lambda {b_2} + {a_3}\lambda {b_3} \\ \overrightarrow a .(\lambda \overrightarrow b ) = \lambda {a_1}{b_1} + \lambda {a_2}{b_2} + \lambda {a_3}b \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD