Physics > Laws of Motion > 2.0 Newton's second law of motion

  Laws of Motion
    1.0 Newton's first law of motion
    2.0 Newton's second law of motion
    3.0 Newton's third law of motion
    4.0 Force
    5.0 Normal Force
    6.0 Gravitional Force
    7.0 Tension Force
    8.0 Pseudo force
    9.0 Friction
    10.0 Centripetal force

2.1 Equations of Newton's second law of motion
2.1.1 When block is stationary

From the FBD we will write the vector equation of force.

Note: Direction of force is very important.

Along $x$ axis,
$${\overrightarrow F _x} = {\overrightarrow N _1} + {\overrightarrow F _2}$$ or $$\begin{equation} \begin{aligned} {\overrightarrow F _x} = {\overrightarrow N _1} + {\overrightarrow F _2} \\ {\overrightarrow F _x} = \left( {{N_1} - {F_2}} \right)\widehat i\quad ...(i) \\\end{aligned} \end{equation} $$ Along $y$ axis, $$\begin{equation} \begin{aligned} {\overrightarrow F _y} = {\overrightarrow N _2} + {\overrightarrow F _1} + m\overrightarrow g \\ {\overrightarrow F _y} = \left( {{N_2} - mg - {F_1}} \right)\widehat j\quad ...(ii) \\\end{aligned} \end{equation} $$ Along $z$ axis, $${\overrightarrow F _z} = 0$$
As the block is stationary so, $\begin{equation} \begin{aligned} {\overrightarrow a _x} = 0 \\ {\overrightarrow a _y} = 0 \\ {\overrightarrow a _z} = 0 \\\end{aligned} \end{equation} $

Therefore, $$\begin{equation} \begin{aligned} {\overrightarrow F _x} = m{\overrightarrow a _x} \\ {\overrightarrow F _x} = 0 \\\end{aligned} \end{equation} $$
Similarly, $${\overrightarrow F _x} = {\overrightarrow F _y} = {\overrightarrow F _z} = 0\quad ...(iii)$$
From equation $(i)$, $(ii)$ and $(iii)$ we get, $$\begin{equation} \begin{aligned} 0 = {N_1} - {F_2}\quad \left( {As,\;{{\overrightarrow F }_x} = 0} \right) \\ {N_1} = {F_2} \\\end{aligned} \end{equation} $$ Also, $$\begin{equation} \begin{aligned} 0 = {N_2} - \left( {mg + {F_1}} \right)\quad \left( {As,\;{{\overrightarrow F }_y} = 0} \right) \\ {N_2} = mg + {F_1} \\\end{aligned} \end{equation} $$

2.1.2 When block is moving with constant speed

This type of problem will be solved in the same way as the previous one.

From the FBD we will write the vector equation of force.

Note: Direction of force is very important.

Along $x$ direction, $$\begin{equation} \begin{aligned} {{\vec F}_x} = {{\vec F}_1} + {{\vec F}_2} \\ {{\vec F}_x} = \left( {{F_1} - {F_2}} \right)\widehat i\quad ...(i) \\\end{aligned} \end{equation} $$ Along $y$ direction, $$\begin{equation} \begin{aligned} {\overrightarrow F _y} = \overrightarrow N + m\overrightarrow g \\ {\overrightarrow F _y} = \left( {N - mg} \right)\widehat j\quad ...(ii) \\\end{aligned} \end{equation} $$
As the system is moving with constant velocity (means zero acceleration) so,

$\begin{equation} \begin{aligned} {\overrightarrow a _x} = 0 \\ {\overrightarrow a _y} = 0 \\ {\overrightarrow a _z} = 0 \\\end{aligned} \end{equation} $

Therefore, $$\begin{equation} \begin{aligned} {\overrightarrow F _x} = m{\overrightarrow a _x} \\ {\overrightarrow F _x} = 0 \\\end{aligned} \end{equation} $$
Similarly, $${\overrightarrow F _x} = {\overrightarrow F _y} = {\overrightarrow F _z} = 0\quad ...(iii)$$
From equation $(i)$, $(ii)$ and $(iii)$ we get,
$$\begin{equation} \begin{aligned} 0 = {F_1} - {F_2}\quad \left( {As,\;{{\overrightarrow F }_x} = 0} \right) \\ {F_1} = {F_2} \\ \\ 0 = N - mg\quad \left( {As,\;{{\overrightarrow F }_y} = 0} \right) \\ N = mg \\\end{aligned} \end{equation} $$

2.1.3 When block is moving with constant acceleration


From the FBD we will write the vector equation of force.

Note: Direction of force is very important.

$$\begin{equation} \begin{aligned} {\overrightarrow F _x} = {\overrightarrow F _1} + \overrightarrow F 2 \\ {\overrightarrow F _x} = \left( {{F_1} - {F_2}} \right)\widehat i\quad ...(i) \\ \\ {\overrightarrow F _y} = \overrightarrow N + m\overrightarrow g \\ {\overrightarrow F _y} = \left( {N - mg} \right)\widehat j\quad ...(ii) \\\end{aligned} \end{equation} $$
As we can see the acceleration is only along $x$ direction. So,

$\begin{equation} \begin{aligned} {\overrightarrow a _x} = a\left( { - \widehat i} \right) \\ {\overrightarrow a _y} = 0 \\ {\overrightarrow a _z} = 0 \\\end{aligned} \end{equation} $

Therefore, $$\begin{equation} \begin{aligned} {\overrightarrow F _x} = m{\overrightarrow a _x} \\ {\overrightarrow F _x} = ma\left( { - \widehat i} \right) \\ {\overrightarrow F _x} = - ma\widehat i\quad ...(iii) \\\end{aligned} \end{equation} $$ And, $${\overrightarrow F _y} = {\overrightarrow F _y} = 0\quad ...(iv)$$
From equation $(i)$, $(ii)$, $(iii)$ and $(iv)$ we get, $$\begin{equation} \begin{aligned} - ma\widehat i = \left( {{F_1} - {F_2}} \right)\widehat i\quad \left( {As,\;{{\overrightarrow F }_x} = - ma\widehat i} \right) \\ {F_1} = {F_2} - ma \\ \\ 0 = \left( {N - mg} \right)\quad \left( {As,\;{{\overrightarrow F }_y} = 0} \right) \\ N = mg \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD