Physics > Rotational Dynamics > 1.0 Introduction

  Rotational Dynamics
    1.0 Introduction
    2.0 Angular momentum or moment of a momentum
    3.0 Relation between torque and angular momentum
    4.0 Combined translational and rotational motion of a rigid body
    5.0 Rotational kinetic energy
    6.0 Uniform pure rolling
    7.0 Accelerated pure rolling
    8.0 Instantaneous axis of rotation
    9.0 Toppling

1.2 Relation between torque and moment of inertia
As we know, $$\begin{equation} \begin{aligned} {\overrightarrow \tau _i} = {\overrightarrow r _i} \times {\overrightarrow F _i} \\ {\overrightarrow \tau _i} = {\overrightarrow r _i} \times {m_i}{\overrightarrow a _i} \\ {\overrightarrow \tau _i} = {m_i}\left[ {{{\overrightarrow r }_i} \times \left( {\overrightarrow \alpha \times {{\overrightarrow r }_i}} \right)} \right] \\\end{aligned} \end{equation} $$
Vector triple product is given by, $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $

Therefore, $$\begin{equation} \begin{aligned} \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c \\ {{\vec \tau }_i} = {{\vec r}_i} \times {{\vec F}_i} \\ {{\vec \tau }_i} = {{\vec r}_i} \times {m_i}{{\vec a}_i} \\ {{\vec \tau }_i} = {m_i}\left[ {{{\vec r}_i} \times \left( {\vec \alpha \times {{\vec r}_i}} \right)} \right] \\ {{\vec \tau }_i} = {m_i}\left[ {\left( {\overrightarrow r .\overrightarrow r } \right)\overrightarrow \alpha - \left( {} \right)\overrightarrow r } \right] \\ {{\vec \tau }_i} = {m_i}{r^2}\overrightarrow \alpha \quad \left( {\overrightarrow r .\overrightarrow \alpha = 0,\;As\;\overrightarrow r \bot \overrightarrow \alpha \;} \right) \\\end{aligned} \end{equation} $$ $$\begin{equation} \begin{aligned} {{\vec \tau }_i} = {m_i}\left[ {\left( {{{\overrightarrow r }_i}.{{\overrightarrow r }_i}} \right)\overrightarrow \alpha - \left( {{{\overrightarrow r }_i}.\overrightarrow \alpha } \right){{\overrightarrow r }_i}} \right] \\ {{\vec \tau }_i} = {m_i}r_i^2\overrightarrow \alpha \quad \left( {{{\overrightarrow r }_i}.\overrightarrow \alpha = 0,\;As\;{{\overrightarrow r }_i} \bot \overrightarrow \alpha \;} \right) \\\end{aligned} \end{equation} $$
Summing up for all the particles of the rigid body we get, $$\begin{equation} \begin{aligned} \sum {{{\overrightarrow \tau }_i}} = \sum {{m_i}r_i^2\overrightarrow \alpha } \\ \overrightarrow \tau = I\overrightarrow \alpha \\\end{aligned} \end{equation} $$
where $I$ is the moment of inertia about the axis of rotation

Note:
  • Torque $\left( \tau \right)$ is equal to the net torque due to the external forces only because all the internal forces adds to zero.
  • Torque produces angular acceleration $\left( {\overrightarrow \alpha } \right)$, so they are in the same direction as shown in the figure

If the axis of rotation pass through $COM$ the above equation becomes, $${\overrightarrow \tau _{COM}} = {I_{COM}}\overrightarrow \alpha $$
As shown in the figure, to rotate a body about an axis of rotation with angular acceleration $\left( {{\alpha _1}} \right)$ whose moment of inertia is $I_1$, then torque $\left( {{\tau _1}} \right)$ is need about the axis of rotation which is given by, $${\tau _1} = {I_1}{\alpha _1}$$
Similarly, ${\tau _2} = {I_2}{\alpha _2}$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD