Physics > Rotational Dynamics > 2.0 Angular momentum or moment of a momentum

  Rotational Dynamics
    1.0 Introduction
    2.0 Angular momentum or moment of a momentum
    3.0 Relation between torque and angular momentum
    4.0 Combined translational and rotational motion of a rigid body
    5.0 Rotational kinetic energy
    6.0 Uniform pure rolling
    7.0 Accelerated pure rolling
    8.0 Instantaneous axis of rotation
    9.0 Toppling

2.1 For better understanding angular momentum is classified as following four types,
  • Angular momentum of a particle about a given point
  • Angular momentum of a particle describing circular motion
  • Angular momentum of a rigid body rotating about an axis of rotation
  • Angular momentum of a combined translational and rotational motion of a rigid body

2.1.1 Angular momentum of a particle about a given point

Consider a particle $P$ of mass $m$ is moving with velocity $v$


Linear momentum $\left( {\overrightarrow p } \right)$ of the particle is, $$\overrightarrow p = m\overrightarrow v $$

So, its angular momentum $\overrightarrow L $ about point $O$ is given by, $$\begin{equation} \begin{aligned} \overrightarrow L = \overrightarrow r \times \overrightarrow p \\ \overrightarrow L = \overrightarrow r \times \left( {m\overrightarrow v } \right) \\ \overrightarrow L = m\left( {\overrightarrow r \times \overrightarrow v } \right) \\\end{aligned} \end{equation} $$

where,

$\overrightarrow r $: is the position vector of particle $P$ from point $O$ at any time $t$


Magnitude of angular momentum is, $$L = mvr\sin \theta $$ or $$L = mv{r_ \bot }$$

where, ${r_ \bot }$ is the perpendicular of the velocity vector $\left( {\overrightarrow v } \right)$ from point $O$


2.1.2 Angular momentum of a particle describing a circular motion

Consider a particle $P$ of mass $m$ moving in a circle of radius $r$ about point $O$ as shown in the figure.


So, angular momentum of the particle $P$ about $O$ is, $$\begin{equation} \begin{aligned} \overrightarrow L = \overrightarrow r \times \overrightarrow p \\ \overrightarrow L = \overrightarrow r \times \left( {m\overrightarrow v } \right) \\ \overrightarrow L = m\left( {\overrightarrow r \times \overrightarrow v } \right) \\\end{aligned} \end{equation} $$ As, $$\overrightarrow v = \overrightarrow \omega \times \overrightarrow r $$ So, $$\overrightarrow L = m\left( {\overrightarrow r \times \left( {\overrightarrow \omega \times \overrightarrow r } \right)} \right)$$

Vector triple product is given by, $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $ So, $$\overrightarrow L = m\left[ {\left( {\overrightarrow r .\overrightarrow r } \right)\overrightarrow \omega - \left( {\overrightarrow r .\overrightarrow \omega } \right)\overrightarrow r } \right]$$ As, $$\overrightarrow r \bot \overrightarrow \omega $$ So, $$\overrightarrow r .\overrightarrow \omega = r\omega \cos 90^\circ = 0$$ Therefore, $$\overrightarrow L = m{r^2}\overrightarrow \omega $$

As $I = m{r^2}$, $$\overrightarrow L = I\overrightarrow \omega $$

So, the direction of angular momentum is same as the direction of rotation about an axis of rotation.


2.1.3 Angular momentum of a rigid body rotating about an axis of rotation

Consider a rigid body rotating about an axis of rotation with an angular velocity $\omega $.


Now consider a $i^{th}$ particle of mass $m_i$ is moving in a circle of radius $r_i$ about point $O$ with velocity $v_i$ as shown in the figure. $$\overrightarrow v = \overrightarrow \omega \times {\overrightarrow r _i}$$

${\overrightarrow r _i}$: is the position vector from point $O$


So, the angular momentum of the particle $P$ is, $$\begin{equation} \begin{aligned} {{\vec L}_i} = {{\vec r}_i} \times {{\vec p}_i} \\ {{\vec L}_i} = {m_i}\left( {{{\vec r}_i} \times {{\vec v}_i}} \right) \\ {{\vec L}_i} = {m_i}\left[ {{{\vec r}_i} \times \left( {\vec \omega \times {{\vec r}_i}} \right)} \right] \\ {{\vec L}_i} = {m_i}\left[ {\left( {{{\vec r}_i}.{{\vec r}_i}} \right)\vec \omega - \left( {{{\vec r}_i}.\vec \omega } \right){{\vec r}_i}} \right] \\ {{\vec L}_i} = {m_i}\left[ {r_i^2\vec \omega - 0} \right]\quad \left( {As,\;{{\vec r}_i} \bot \vec \omega } \right) \\ {{\vec L}_i} = {m_i}r_i^2\vec \omega \\\end{aligned} \end{equation} $$

Taking summation of the above equation for the whole rigid body we get, $$\begin{equation} \begin{aligned} \sum {{{\overrightarrow L }_i} = \sum {{m_i}r_i^2} \overrightarrow \omega } \\ \overrightarrow L = I\overrightarrow \omega \\\end{aligned} \end{equation} $$

As, $\sum {mr_i^2 = I} $

$I$ is the moment of inertia of a rigid body about an axis of rotation.




2.1.4 Angular momentum of a combined translation and rotational motion of a rigid body

Consider a rigid body undergoing a rotational motion with an angular velocity $\left( {\overrightarrow \omega } \right)$ and translational motion with velocity $\left( {\overrightarrow v } \right)$ in the direction as shown in the figure.


Let $O$ be a fixed point in an inertial frame of reference.


Now, let us consider an $i^{th}$ particle of mass $m_i$ at a distance $\left( {{{\overrightarrow r }_{i,\;com}}} \right)$ moving with a velocity $\left( {{{\overrightarrow v }_{i,\;com}}} \right)$.


where,

${\overrightarrow r _{i,\;com}}$: Position vector of the $i^{th}$ particle with respect to center of mass

${\overrightarrow v _{i,\;com}}$: Velocity of the $i^{th}$ particle with respect to center of mass


As we know, $$\begin{equation} \begin{aligned} {\overrightarrow v _{i,\;com}} = {\overrightarrow v _i} - {\overrightarrow v _{com}} \\ {\overrightarrow v _i} = {\overrightarrow v _{i,\;com}} + {\overrightarrow v _o}\quad \left( {As,\,{{\overrightarrow v }_{com}} = {{\overrightarrow v }_o}} \right) \\\end{aligned} \end{equation} $$

where,

${\overrightarrow v _i}$: Velocity of the $i^{th}$ particle


Also, $$\begin{equation} \begin{aligned} {\overrightarrow r _{i,\;com}} = {\overrightarrow r _i} - {\overrightarrow r _{com}} \\ {\overrightarrow r _i} = {\overrightarrow r _{i,\;com}} + {\overrightarrow r _o}\quad \left( {As,\,{{\overrightarrow r }_{com}} = {{\overrightarrow r }_o}} \right) \\\end{aligned} \end{equation} $$

So, the angular momentum of the $i^{th}$ particle about point $O$ is, $$\begin{equation} \begin{aligned} {\overrightarrow L _i} = {\overrightarrow r _i} \times {\overrightarrow p _i} \\ {\overrightarrow L _i} = {\overrightarrow r _i} \times \left( {{m_i}{{\overrightarrow v }_i}} \right) \\ {\overrightarrow L _i} = {m_i}\left[ {{{\overrightarrow r }_i} \times {{\overrightarrow v }_i}} \right] \\ {\overrightarrow L _i} = {m_i}\left[ {\left( {{{\overrightarrow r }_{i,\;com}} + {{\overrightarrow r }_o}} \right) \times \left( {{{\overrightarrow v }_{i,\;com}} + {{\overrightarrow v }_o}} \right)} \right] \\ {\overrightarrow L _i} = {m_i}\left[ {\left( {{{\overrightarrow r }_{i,\;com}} \times {{\overrightarrow v }_{i,\;com}}} \right) + \left( {{{\overrightarrow r }_{i,\;com}} \times {{\overrightarrow v }_o}} \right) + \left( {{{\overrightarrow r }_o} \times {{\overrightarrow v }_{i,\;com}}} \right) + \left( {{{\overrightarrow r }_o} \times {{\overrightarrow v }_o}} \right)} \right] \\ \\\end{aligned} \end{equation} $$

Taking summation of the above equation for calculating angular momentum of the whole rigid body, $$\begin{equation} \begin{aligned} \sum {{{\overrightarrow L }_i}} = \sum {{m_i}} \left[ {\left( {{{\overrightarrow r }_{i,\;com}} \times {{\overrightarrow v }_{i,\;com}}} \right) + \left( {{{\overrightarrow r }_{i,\;com}} \times {{\overrightarrow v }_o}} \right) + \left( {{{\overrightarrow r }_o} \times {{\overrightarrow v }_{i,\;com}}} \right) + \left( {{{\overrightarrow r }_o} \times {{\overrightarrow v }_o}} \right)} \right] \\ \sum {{{\overrightarrow L }_i}} = \sum {{m_i}} \left( {{{\overrightarrow r }_{i,\;com}} \times {{\overrightarrow v }_{i,\;com}}} \right) + \left( {\sum {{m_i}} {{\overrightarrow r }_{i,\;com}} \times {{\overrightarrow v }_o}} \right) + \left[ {{{\overrightarrow r }_o} \times \left( {\sum {{m_i}} {{\overrightarrow v }_{i,\;com}}} \right)} \right] + \sum {{m_i}} \left( {{{\overrightarrow r }_o} \times {{\overrightarrow v }_o}} \right) \\\end{aligned} \end{equation} $$

As we know,

$\begin{equation} \begin{aligned} \sum {{{\overrightarrow L }_i}} = L \\ {\sum m _i} = M \\ \sum {{m_i}{r_{i,\;com}} = M{R_{com,\;com}}} = 0 \\ \sum {{m_i}{v_{i,\;com}}} = M{v_{com,\;com}} = 0 \\\end{aligned} \end{equation} $


So, the above equation becomes, $$\begin{equation} \begin{aligned} \overrightarrow L = \sum {{m_i}} \left( {{{\overrightarrow r }_{i,\;com}} \times {{\overrightarrow v }_{i,\;com}}} \right) + M\left( {{{\overrightarrow r }_o} \times {{\overrightarrow v }_o}} \right) \\ \overrightarrow L = \sum {{m_i}} \left( {{{\overrightarrow r }_{i,\;com}} \times \left( {\overrightarrow \omega \times {{\overrightarrow r }_{i,\;com}}} \right)} \right) + M\left( {{{\overrightarrow r }_o} \times {{\overrightarrow v }_o}} \right) \\ \overrightarrow L = \sum {{m_i}} \left( {r_i^2\overrightarrow \omega } \right) + M\left( {{{\overrightarrow r }_o} \times {{\overrightarrow v }_o}} \right) \\ \overrightarrow L = \left( {\sum {{m_i}} r_i^2} \right)\overrightarrow \omega + \left( {{{\overrightarrow r }_o} \times M{{\overrightarrow v }_o}} \right) \\ \overrightarrow L = {I_{com}}\overrightarrow \omega + \left( {{{\overrightarrow r }_o} \times {{\overrightarrow p }_{com}}} \right) \\ \overrightarrow L = {\overrightarrow L _{com}} + \left( {{{\overrightarrow r }_o} \times {{\overrightarrow p }_{com}}} \right) \\\end{aligned} \end{equation} $$

where,

${\overrightarrow p _{com}}$: Linear momentum of the rigid body about the center of mass

$\left( {{{\overrightarrow r }_o} \times {{\overrightarrow p }_{com}}} \right)$: angular momentum of the center of mass about point $O$



Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD