Physics > Rotational Dynamics > 8.0 Instantaneous axis of rotation

  Rotational Dynamics
    1.0 Introduction
    2.0 Angular momentum or moment of a momentum
    3.0 Relation between torque and angular momentum
    4.0 Combined translational and rotational motion of a rigid body
    5.0 Rotational kinetic energy
    6.0 Uniform pure rolling
    7.0 Accelerated pure rolling
    8.0 Instantaneous axis of rotation
    9.0 Toppling

8.2 Relative velocity method
Consider a wheel whose velocities of point $A$ and $B$ are ${\overrightarrow v _A}$ and ${\overrightarrow v _B}$ respectively as shown in the figure.

If ${\overrightarrow v _A} = {\overrightarrow v _B}$, then the wheel is only doing translational motion.

If ${\overrightarrow v _A} \ne {\overrightarrow v _B}$, then the wheel is undergoing plane motion i.e. (rotational + translational) motion.

Let us consider the angular velocity $\left( {\overrightarrow \omega } \right)$ in the clockwise direction about the centre $O$, as shown in the figure.

So,
$\begin{equation} \begin{aligned} \overrightarrow \omega = \omega \left( { - \widehat k} \right) \\ {\overrightarrow v _A} = {v_A}\left( {\widehat i} \right) \\ {\overrightarrow v _B} = {v_B}\left( {\widehat i} \right) \\\end{aligned} \end{equation} $

We can consider either of the point $A$ or $B$ as our instantaneous axis of rotation.

So, as we know that the body undergoes pure rotational motion about ICR, so relative velocity is taken about the IAR.

Let us assume two cases. In case I, assume point $A$ as IAR and in case II, assume point $B$ as IAR.



Case ICase II
IAR is at point $A$

As we know,\[\left. \begin{gathered}
{\overrightarrow v _A} = {v_A}\left( {\widehat i} \right) \hspace{1em} \\ {\overrightarrow v _B} = {v_B}\left( {\widehat i} \right) \hspace{1em} \\ \overrightarrow \omega = \omega \left( { - \widehat k} \right) \hspace{1em} \\
{\overrightarrow r _{AB}} = 2R\left( { - \widehat j} \right) \hspace{1em} \\ \end{gathered} \right\}\quad ...(i)\]
$${\overrightarrow v _{BA}} = {\overrightarrow v _B} - {\overrightarrow v _A}\quad ...(ii)$$
Now, point $B$ undergoes pure rotation about point $A$ which is IAR

So, $${\overrightarrow v _{BA}} = \overrightarrow \omega \times {\overrightarrow r _{AB}}\quad ...(iii)$$
Fro equation $(ii)$ and $(iii)$ we get, $$\overrightarrow \omega \times {\overrightarrow r _{AB}} = {\overrightarrow v _B} - {\overrightarrow v _A}\quad ...(iv)$$
From equation $(i)$ & $(iv)$ we get, $$\begin{equation} \begin{aligned} \left( { - \omega } \right)\widehat k \times \left( { - 2R} \right)\widehat j = \left( {{v_B} - {v_A}} \right)\widehat i \\ - 2\omega R\;\widehat i = \left( {{v_B} - {v_A}} \right)\widehat i \\ \omega = \left( {\frac{{{v_A} - {v_B}}}{{2R}}} \right) \\\end{aligned} \end{equation} $$ or $$\begin{equation} \begin{aligned} \overrightarrow \omega = \omega \left( { - \widehat k} \right) \\ \overrightarrow \omega = \left( {\frac{{{v_A} - {v_B}}}{{2R}}} \right)\left( { - \widehat k} \right) \\ \overrightarrow \omega = \left( {\frac{{{v_B} - {v_A}}}{{2R}}} \right) \\\end{aligned} \end{equation} $$
IAR is at point $B$

As we know, \[\left. \begin{gathered}{\overrightarrow v _A} = {v_A}\left( {\widehat i} \right) \hspace{1em} \\{\overrightarrow v _B} = {v_B}\left( {\widehat i} \right) \hspace{1em} \\ \overrightarrow \omega = \omega \left( { - \widehat k} \right) \hspace{1em} \\ {\overrightarrow r _{BA}} = 2R\left( {\widehat j} \right) \hspace{1em} \\\end{gathered}\right\}\quad ...(i)\]
$${\overrightarrow v _{AB}} = {\overrightarrow v _A} - {\overrightarrow v _B}\quad ...(ii)$$
Now, point $A$ undergoes pure rotation about point $B$ which is IAR

So, $${\overrightarrow v _{AB}} = \overrightarrow \omega \times {\overrightarrow r _{BA}}\quad ...(iii)$$
Fro equation $(ii)$ and $(iii)$ we get, $$\overrightarrow \omega \times {\overrightarrow r _{BA}} = {\overrightarrow v _A} - {\overrightarrow v _B}\quad ...(iv)$$
From equation $(i)$ & $(iv)$ we get, $$\begin{equation} \begin{aligned} \left( { - \omega } \right)\widehat k \times \left( { 2R} \right)\widehat j = \left( {{v_A} - {v_B}} \right)\widehat i \\ 2\omega R\;\widehat i = \left( {{v_A} - {v_B}} \right)\widehat i \\ \omega = \left( {\frac{{{v_A} - {v_B}}}{{2R}}} \right) \\\end{aligned} \end{equation} $$ or $$\begin{equation} \begin{aligned} \overrightarrow \omega = \omega \left( { - \widehat k} \right) \\ \overrightarrow \omega = \left( {\frac{{{v_A} - {v_B}}}{{2R}}} \right)\left( { - \widehat k} \right) \\ \overrightarrow \omega = \left( {\frac{{{v_B} - {v_A}}}{{2R}}} \right) \\\end{aligned} \end{equation} $$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD