Physics > Communication Systems > 3.0 Modulation

  Communication Systems
    1.0 Elements of a communication system
    2.0 Radio waves
    3.0 Modulation

3.1 Amplitude modulation
In amplitude modulation, the amplitude of carrier wave is varied in accordance with the amplitude of modulating signal.

Let $c(t) = {A_c}\sin {\omega _c}t$ represent carrier wave

$m(t) = {A_m}\sin {\omega _m}t$ represent modulating signal

The amplitude modulated signal is represented as, $$\begin{equation} \begin{aligned} {c_m}\left( t \right) = \left( {{A_c} + {A_m}\sin {\omega _m}t} \right)\sin {\omega _c}t \\ {c_m}\left( t \right) = {A_c}\left( {1 + \frac{{{A_m}}}{{{A_c}}}\sin {\omega _m}t} \right)\sin {\omega _c}t \\ {c_m}\left( t \right) = {A_c}\sin {\omega _c}t + \mu {A_c}\sin {\omega _m}t\sin {\omega _c}t \\ {c_m}\left( t \right) = {A_c}\sin {\omega _c}t + \frac{{\mu {A_c}}}{2}\cos \left( {{\omega _c} - {\omega _m}} \right)t - \frac{{\mu {A_c}}}{2}\cos \left( {{\omega _c} + {\omega _m}} \right)t \\ \\\end{aligned} \end{equation} $$

where,

${\omega _c} = 2\pi {\upsilon _c}$: Angular frequency of carrier wave

${\omega _m} = 2\pi {\upsilon _m}$: Angular frequency of modulating signal

$A_m$: Amplitude of the modulating signal

$A_c$: Amplitude of the carrier wave

$\mu = \frac{{{A_m}}}{{{A_c}}}$: Modulation index.

Note: In practice, modulation index $\mu $ is kept $ \leqslant $ to avoid distortion.

The amplitude modulated signal contains three frequencies.

${\upsilon _c}$: Carrier frequency
${\upsilon _{SB}} = \left( {{\upsilon _c} \pm {\upsilon _m}} \right)$: Side band frequencies

Frequency of lower side band, $${\upsilon _{S{B_L}}} = {\upsilon _c} - {\upsilon _m}$$
Frequency of upper side band, $${\upsilon _{S{B_U}}} = {\upsilon _c} + {\upsilon _m}$$

The frequency spectrum of the amplitude modulated signal is shown in the figure.

Bandwidth of amplitude modulated $(AM)$ signal $ = {\upsilon _{S{B_U}}} - {\upsilon _{S{B_L}}} = 2{\upsilon _m}$

Average power per cycle in the carrier wave is, $${P_c} = \frac{{A_c^2}}{{2R}}$$
where $R$ is the resistance

Total power per cycle in the modulated wave, $${P_t} = {P_c}\left( {1 + \frac{{{\mu ^2}}}{2}} \right)$$

If $I_t$ is $rms$ value of total modulated current and $I_c$ is the $rms$ value of unmodulated carrier current then,
$$\frac{{{I_t}}}{{{I_c}}} = \sqrt {1 + \frac{{{\mu ^2}}}{2}} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD