Physics > Circular Motion > 1.0 Introduction

  Circular Motion
    1.0 Introduction
    2.0 Dynamics of circular motion
    3.0 Motion in a vertical circle
    4.0 Rigid body rotating in a vertical circle
    5.0 Circular turning of roads
    6.0 Conical Pendulum
    7.0 Death well
    8.0 Rotor
    9.0 Bending of a cyclist or motorcyclist while taking turn
    10.0 Centrifugal force

1.2 Kinematic equation for circular motion
We can write following kinematic equation for circular motion when the angular acceleration is constant,
  • $\overrightarrow \omega = {\overrightarrow \omega _0} + \overrightarrow \alpha t$
  • $\overrightarrow \theta = {\overrightarrow \omega _0}t + \frac{1}{2}\overrightarrow \alpha {t^2}$
  • ${\omega ^2} = \omega _0^2 + 2\overrightarrow \alpha .\;\overrightarrow \theta $
Let us derive the above equations for better understanding.

Assume a particle moving in a circular path of radius $r$ with its center at $O$. The particle accelerates with constant angular acceleration $\alpha $ and ${\omega _0}$ is the angular velocity at time $t=0$.

1. $\overrightarrow \omega = {\overrightarrow \omega _0} + \overrightarrow \alpha t$

For constant angular acceleration we know, $$\frac{{d\overrightarrow \omega }}{{dt}} = \overrightarrow \alpha $$
Integrating the above equation with proper limits we get,
$$\begin{equation} \begin{aligned} \left[ {\overrightarrow \omega } \right]_{{\omega _0}}^\omega = \overrightarrow \alpha \left[ t \right]_0^t \\ \overrightarrow \omega - {\overrightarrow \omega _0} = \overrightarrow \alpha \left( {t - 0} \right) \\ \overrightarrow \omega = {\overrightarrow \omega _0} + \overrightarrow \alpha t \\\end{aligned} \end{equation} $$


2. $\overrightarrow \theta = {\overrightarrow \omega _0}t + \frac{1}{2}\overrightarrow \alpha {t^2}$

As we know, $$\begin{equation} \begin{aligned} \overrightarrow \omega = {\overrightarrow \omega _0} + \overrightarrow \alpha t\quad ...(i) \\ \overrightarrow \omega = \frac{{d\overrightarrow \theta }}{{dt}}\quad ...(ii) \\\end{aligned} \end{equation} $$
From equation $(i)$ and $(ii)$ we get, $$\frac{{d\overrightarrow \theta }}{{dt}} = {\overrightarrow \omega _0} + \overrightarrow \alpha t\quad {\text{or}}\quad d\overrightarrow \theta = \left( {{{\overrightarrow \omega }_0} + \overrightarrow \alpha t} \right)dt$$
Integrating the above equation with proper limits we get, $$\begin{equation} \begin{aligned} \int\limits_0^\theta {d\overrightarrow \theta = \int\limits_0^t {\left( {{\omega _0} + \alpha t} \right)} dt} \\ \overrightarrow \theta = {\overrightarrow \omega _0}t + \frac{1}{2}\overrightarrow \alpha {t^2} \\\end{aligned} \end{equation} $$


3. ${\omega ^2} = \omega _0^2 + 2\overrightarrow \alpha .\;\overrightarrow \theta $

As we know, $$\begin{equation} \begin{aligned} \frac{{d\overrightarrow \omega }}{{dt}} = \overrightarrow \alpha \quad {\text{or}}\quad d\overrightarrow \omega = \overrightarrow \alpha dt\quad ...(i) \\ \frac{{d\overrightarrow \theta }}{{dt}} = \overrightarrow \omega \quad {\text{or}}\quad dt = \frac{{d\overrightarrow \theta }}{{\overrightarrow \omega }}\quad ...(ii) \\\end{aligned} \end{equation} $$
From equation $(i)$ and $(ii)$ we get,
$$d\overrightarrow \omega = \frac{{\overrightarrow \alpha d\overrightarrow \theta }}{{\overrightarrow \omega }}\quad {\text{or}}\quad \overrightarrow \omega d\overrightarrow \omega = \overrightarrow \alpha d\overrightarrow \theta $$
Integrating the above equation with proper limits we get,
$$\begin{equation} \begin{aligned} \int\limits_{{\omega _0}}^\omega {\overrightarrow \omega d\overrightarrow \omega } = \overrightarrow \alpha \int\limits_0^\theta {d\overrightarrow \theta } \\ {\omega ^2} = \omega _0^2 + 2\overrightarrow \alpha .\;\overrightarrow \theta \\\end{aligned} \end{equation} $$


Question 1. A particle moving in a circular path with an initial velocity of $2\ rad/s$ and the angular position at any time $t$ can be written as $\theta = {t^3} - 2{t^2} + ct$. Find the angular velocity and angular acceleration at time $t=2\ s$ (where $c$ is a constant).

Solution: From the question,

$\begin{equation} \begin{aligned} {\omega _0} = 2\;rad/s \\ \theta = {t^3} - 2{t^2} + ct \\\end{aligned} \end{equation} $

Therefore, our first target is to find the constant $c$. So, differentiating the above equation w.r.t time $t$ we get,
$$\frac{{d\theta }}{{dt}} = \omega = 3{t^2} - 4t + c$$
At $t=0$, $\omega = {\omega _0}$ So,
$$\begin{equation} \begin{aligned} 2 = 0 - 0 + c \\ c = 2\;rad/s \\\end{aligned} \end{equation} $$
Therefore $\omega $ at time $t=2\ s$ we get, $$\begin{equation} \begin{aligned} \omega = 3{t^2} - 4t + 2 \\ \omega = 12 - 8 + 2 \\ \omega = 6\;rad/s \\\end{aligned} \end{equation} $$
Also, $\alpha $ at time $t=2\ s$ we get, $$\begin{equation} \begin{aligned} \frac{{d\omega }}{{dt}} = 6t - 4 \\ \alpha = 12 - 4 \\ \alpha = 8\;rad/{s^2} \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD