Chemistry > Hydrocarbons > 5.0 Chemical Properties

  Hydrocarbons
    1.0 Introduction
    2.0 Alkanes
    3.0 Methods of Preparation Alkanes
    4.0 Physical Proparties
    5.0 Chemical Properties
    6.0 Alkenes
    7.0 Methods of Preparation Alkenes
    8.0 Physical Proparties
    9.0 Chemical Properties
    10.0 Mechanism Of Some Important Reaction Of Alkenes
    11.0 Alkynes
    12.0 Methods of Preparation Alkynes
    13.0 Physical Properties
    14.0 Chemical Properteis
    15.0 Modern Concept
    16.0 Properteis
    17.0 Mechanism of Electrophilic Substitution Reactions
    18.0 Toluene
    19.0 Alkenyl Benzene

5.1 Substitution reactions of Alkanes
(A) Halogenation
It involves the replacement of 10, 20 & 30 H of alkanes by halogen (F, Cl, Br, I)
For a given type of abstraction of H (say 10) reactivity of halogen is in order:
${F_2} > {\text{ }}C{l_2} > {\text{ }}B{r_2} > {\text{ }}{I_2}$

For a given halogen, abstraction of 10, 20 and 30 H’s is in order:
${1^0} < {\text{ }}{2^0} < {\text{ }}{3^0}$
For chlorination, reactivity of ${1^0},{\text{ }}{2^0},{\text{ }}{3^0}$ H’s is in ratio:
$1{\text{ }}:{\text{ }}2{\text{ }}:{\text{ }}3{\text{ }}:{\text{ }}:{\text{ }}1{\text{ }}:{\text{ }}3.8{\text{ }}:{\text{ }}5$
$$\Delta {\text{ }} = {\text{ }}105{\text{ }}kcal{\text{ }}mo{l^{ - 1}}$$
$$\Delta {\text{ }} = {\text{ }}100{\text{ }}kcal{\text{ }}mo{l^{ - 1}}$$
$$\Delta {\text{ }} = {\text{ }}96{\text{ }}kcal{\text{ }}mo{l^{ - 1}}$$
$$\Delta {\text{ }} = {\text{ }}93{\text{ }}kcal{\text{ }}mo{l^{ - 1}}$$

Bond energy of extraction of ${1^0}H{\text{ }} > {\text{ }}{2^0}H{\text{ }} > {\text{ }}{3^0}$ H, hence the reactivity order is ${1^0} < {\text{ }}{2^0} < {\text{ }}{3^0}$ H, hence, the stability order of alkyl radical free is

Mechanism

\[C{H_4} + C{l_2}\xrightarrow[{}]{{hv}}C{H_3}Cl + HCl\]

(i) Initiation:

\[C{l_2}\xrightarrow[{}]{{h\nu }}2C{l^o}\]

(ii) Propagation:

\[C{H_4} + C{l^o}\xrightarrow[{}]{{}}HCl + CH_3^o\]
\[CH_3^o + Cl_2^{}\xrightarrow[{}]{{}}C{H_3}Cl + Cl_{}^o\]
(iii) Termination:
\[CH_3^o + CH_3^o\xrightarrow[{}]{{}}C{H_3} - CH_3^{}\]
\[Cl_{}^o + Cl_{}^o\xrightarrow[{}]{{}}C{l_2}\]
\[CH_3^o + C_{}^o\xrightarrow[{}]{{}}C{H_3} - Cl\]

Based on relative reactivity of different types of ${H_2}$ percentage of each isomer in the product mixture can be calculated. Consider the case of n – butane.
Relative amount = No. of equivalent hydrogen $ \times $ reactivity
Total amount = 21.2
\[\% {\text{ }}of{\text{ }}A{\text{ }} = \xrightarrow[{21.2}]{{6.0}} \times 100 = 28.3\]
\[\% {\text{ }}of{\text{ }}B{\text{ }} = \xrightarrow[{21.2}]{{15.2.}} \times 100 = 71.7\]
Bromine is less reactive with alkanes in comparison to chlorine, but bromine is more selective in the site of attack when it does react
(B) Nitration
Replacement of H by a nitro group, $ - N{O_2},$ is called nitration.

(C) Sulphonation
Replacement of H by a sulphonic acid group, SO3H is called sulphonation. Oleum is used as a source of $( - S{O_3}H).$
\[{RH{\text{ }} + {\text{ }}{H_2}S{O_4}/S{O_3}\xrightarrow[{}]{}RS{O_3}H{\text{ }} + {\text{ }}{H_2}S{O_4}}\]
\[{{{\left( {C{H_3}} \right)}_3}CH{\text{ }} + {\text{ }}{H_2}S{O_4}/S{O_3}\xrightarrow{{}}{{\left( {C{H_3}} \right)}_3}CS{O_3}H{\text{ }} + {\text{ }}{H_2}S{O_4}}\]
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD