Chemistry > Hydrocarbons > 3.0 Methods of Preparation Alkanes

  Hydrocarbons
    1.0 Introduction
    2.0 Alkanes
    3.0 Methods of Preparation Alkanes
    4.0 Physical Proparties
    5.0 Chemical Properties
    6.0 Alkenes
    7.0 Methods of Preparation Alkenes
    8.0 Physical Proparties
    9.0 Chemical Properties
    10.0 Mechanism Of Some Important Reaction Of Alkenes
    11.0 Alkynes
    12.0 Methods of Preparation Alkynes
    13.0 Physical Properties
    14.0 Chemical Properteis
    15.0 Modern Concept
    16.0 Properteis
    17.0 Mechanism of Electrophilic Substitution Reactions
    18.0 Toluene
    19.0 Alkenyl Benzene

3.2 From coupling reactions

(a) By Wurtz Synthesis:

Case 1: When both alkyl halides are same:

\[R - X + R - X\xrightarrow[{dry\,\,ether}]{{Na}}R - R + 2NaX\]

Case 2: When both alkyl halides are different:

\[R - X + R - X\xrightarrow[{{\text{dry ether}}}]{{Na}}R - R + 2NaX\]

\[C{H_3}C{H_2}Br{\text{ }} + {\text{ }}C{H_3}C{H_2}C{H_2}C{H_2}Br\xrightarrow{{Na/dry ether}}n{\text{ }}butane{\text{ }} + {\text{ }}n{\text{ }}-{\text{ }}octane{\text{ }} + {\text{ }}n{\text{ }}hexane\]

In this case a mixture of three alkanes is obtained & the separation of the mixture into individual member is not always easy, so it’s not a good method for the preparation of alkanes if both alkyl halides are different.

Note:

(i) CH4 can not be prepared by this method.

(ii) 30 alkyl halides do not give this reaction.

(iii) Alkenes are produced as by products.

(iv) This method is suitable for preparation of alkanes having even number of carbons.

(b) By Frankland’s reaction

Alkyl halides undergo coupling in the presence of Zn metal and ethyl alcohol.

\[R - X + R - X\xrightarrow{{Zn/{C_2}{H_5}OH}}R - R + Zn{X_2}\]

\[C{H_3} - Br + C{H_3}Br\xrightarrow{{}}C{H_3} - C{H_3} + ZnB{r_2}\]


Step (i): Alkyl halides react with lithium in dry ether to form alkyl lithium

\[R - X + 2Li\xrightarrow{{Dry\,\,ether}}R - Li + LiX\]
Step (ii): This alkyl lithium reacts with CuI to give dialkyl lithium cuprate known as
Gillman reagent
\[R - X + 2Li\xrightarrow{{Dry\,\,ether}}R - Li + LiX\]
Step (iii): This further reacts with alkyl halides to give alkanes.
\[{R_2}CuLi + R' - X\xrightarrow{{}}R - R' + R - Cu + LiX\]
Some examples are
This method is suitable for the preparation of unsymmetrical alkanes of the type R-R-
(d) By electrolysis of sodium or potassium salts of fatty acids (Kolbe’s electrolysis)
A concentrated solution of the sodium or potassium salt of a carboxylic acid or mixture of carboxylic acids is electrolysed.
\[{R^1}C{O_2}H + {R^2}C{O_2}K + 2{H_2}O\xrightarrow{{Current}}R' - {R^2} + 2C{O_2} + {H_2} + 2KOH\]
\[2C{H_3}C{O_2}K\left( {aq} \right) + 2{H_2}O\xrightarrow{{Current}}\underbrace {C{H_3} - C{H_3} + 2C{O_2}}_{At\,\,anode} + \underbrace {2KOH + {H_2}}_{At\,\,Cathode}\]
Esters, lower alkanes and alkenes are also obtained as side products.
\[{C_2}{H_5}C{O_2}K{C_2}{H_5}C{O_2}^ - + {K^ + }\]
\[{C_2}{H_5}CO_2^ - \xrightarrow{{}}\mathop {{C_2}{H_5}C{O_2}}\limits_{\left( I \right)} + {e^ - }\]
\[{C_2}{H_5}C{O_2}^ \bullet \xrightarrow{{}}\mathop {{C_2}{H_5}^ \bullet }\limits_{\left( {II} \right)} + C{O_2} \uparrow \]
\[\mathop {{C_2}{H_5}C{O_2}^ \bullet }\limits_{\left( I \right)} + \mathop {{C_2}{H_5}^ \bullet }\limits_{\left( {II} \right)} \xrightarrow{{}}\mathop {{C_2}{H_5}C{O_2}}\limits_{\left( {Ester} \right)} {C_2}{H_5}\]
\[\mathop {{C_2}{H_5}^ \bullet }\limits_{} + \mathop {{C_2}{H_5}^ \bullet }\limits_{} \xrightarrow{{}}\mathop {{C_2}{H_5} - }\limits_{} {C_2}{H_5}\]
(e) Hydroboronation
This process is used for preparation of long chain alkanes by coupling of alkyl boranes by means of silver nitrate in presence of $NaOH$ at 250C. Diborane $\left( {{B_2}{H_6}} \right)$ adds to an double bond forming trialkyl borane which on treatment with $AgN{O_3}/NaOH$ or acetic acid yields corresponding alkane.
(4) Decarboxylation of acids
Sodium salts of fatty acids undergo decarboxylation when heated with soda lime.

This reaction takes place as follows
Note:
Sodium formate gives hydrogen gas instead of R – H.

(5) Miscellaneous Methods
(a) Metal carbides (aluminium and beryllium carbides) on hydrolysis gives methane.
\[A{l_4}{C_3}\xrightarrow{{{H_2}O}}Al{\left( {OH} \right)_3} + C{H_4}\]
\[B{e_2}C\xrightarrow{{{H_2}O}}Be{\left( {OH} \right)_2} + C{H_4}\]
(b) Berthelot Synthesis can be used for the preparation of methane and ethane.
\[C + {H_2}\xrightarrow[{{{120}^0}C}]{{Electric\,\,arc}}C{H_4}\]
\[2C + 3{H_2}\xrightarrow[\Delta ]{{Electric\,\,arc}}C{H_3} - C{H_3}\]



Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD