Chemistry > Coordination Compounds > 5.0 Valence bond theory

  Coordination Compounds
    1.0 Basics
    2.0 Addition Salt
    3.0 Nomenclature of Co-ordination Compounds
    4.0 Werner's Co-ordination Theory
    5.0 Valence bond theory
    6.0 Crystal field splitting theory (CFST)
    7.0 Effective atomic number
    8.0 Magnetic Moment
    9.0 Application of Crystal Field Splitting Theory (CFST)
    10.0 Isomerism in Co-ordination compounds
    11.0 Organo-metallic compounds
    12.0 Stability of Co-ordination compounds

5.2 Application and Limitation of Valence Bond Theory

S.No.ComplexConfiguration of metal ionCentral metal atomHybridization Geometry of ComplexNumber of unpaired electronMagnetic behaviour
1${\left[ {Ti{{({H_2}O)}_6}} \right]^{ + 3}}$${d^1}$$T{i^{ + 3}}$${d^2}s{p^3}$OCTAHEDRAL1PARAMAGNETIC
2${\left[ {V{{({H_2}O)}_6}} \right]^{ + 3}}$${d^2}$${V^{ + 3}}$${d^2}s{p^3}$OCTAHEDRAL2PARAMAGNETIC
3${\left[ {Cr{{({H_2}O)}_6}} \right]^{ + 3}}$${d^3}$$C{r^{ + 3}}$${d^2}s{p^3}$OCTAHEDRAL3PARAMAGNETIC
4${\left[ {Cr{{(N{H_3})}_6}} \right]^{ + 3}}$${d^3}$$C{r^{ + 3}}$${d^2}s{p^3}$OCTAHEDRAL3PARAMAGNETIC
5${\left[ {Mn{F_6}} \right]^{3 - }}$${d^4}$$,M{n^{ + 3}}$$s{p^3}{d^2}$OCTAHEDRAL4PARAMAGNETIC
6${\left[ {Mn{{(CN)}_6}} \right]^{3 - }}$${d^4}$$,M{n^{ + 3}}$${d^2}s{p^3}$OCTAHEDRAL2PARAMAGNETIC
7${\left[ {MnC{l_4}} \right]^{2 - }}$${d^5}$$M{n^{ + 2}}$$s{p^3}$TETRAHEDRAL5PARAMAGNETIC
8${\left[ {Fe{F_6}} \right]^{ - 3}}$${d^5}$$F{e^{ + 3}}$$s{p^3}{d^2}$OCTAHEDRAL5PARAMAGNETIC
9${\left[ {Fe{{({H_2}O)}_6}} \right]^{ + 3}}$${d^5}$$F{e^{ + 3}}$$s{p^3}{d^2}$OCTAHEDRAL5PARAMAGNETIC
10${\left[ {Fe{{(CN)}_6}} \right]^{ - 3}}$${d^5}$$F{e^{ + 3}}$${d^2}s{p^3}$OCTAHEDRAL1PARAMAGNETIC
11${\left[ {Fe{{(CN)}_6}} \right]^{ - 4}},$${d^6}$$F{e^{ + 2}},$${d^2}s{p^3}$OCTAHEDRAL0DIAMAGNETIC
12${\left[ {FeC{l_4}} \right]^{2 - }}$${d^6}$$F{e^{ + 2}},$$s{p^3}$TETRAHEDRAL4PARAMAGNETIC
13${\left[ {Co{{(N{H_3})}_6}} \right]^{ + 3}}$${d^6}$$C{o^{ + 3}}$${d^2}s{p^3}$OCTAHEDRAL0PARAMAGNETIC
14${\left[ {Co{F_6}} \right]^{ - 3}}$${d^6}$$C{o^{ + 3}}$$s{p^3}{d^2}$OCTAHEDRAL4DIAMAGNETIC
15$Ni{(CO)_4}$$3{d^6}4{s^2}$$Ni$$s{p^3}$TETRAHEDRAL0DIAMAGNETIC
16${\left[ {Ni{{(CN)}_4}} \right]^{2 - }}$${d^8}$$N{i^{ + 2}}$$ds{p^2}$SQUARE PLANAR0DIAMAGNETIC
17${\left[ {NiC{l_4}} \right]^{ + 2}}$${d^8}$$N{i^{ + 2}}$s{p^3}$TETRAHEDRAL2PARAMAGNETIC
18${\left[ {Ni{{({H_2}O)}_6}} \right]^{2 + }}$${d^8}$$N{i^{ + 2}}$s{p^3}{d^2}$OCTAHEDRAL2PARAMAGNETIC
19${\left[ {CuC{l_4}} \right]^{ - 2}}$${d^9}$$C{u^{ + 2}}$$s{p^3}$TETRAHEDRAL1PARAMAGNETIC
20${\left[ {Zn{{(N{H_3})}_4}} \right]^{ + 2}}$${d^{10}}$$Z{n^{ + 2}}$$s{p^3}$TETRAHEDRAL0DIAMAGNETIC
21$\left[ {Pt(N{H_3})C{l_2}} \right]$${d^8}$$P{t^{ + 3}}$$ds{p^2}$SQUARE PLANAR0DIAMAGNETIC




Limitation of valence bond theory: While the VBT theory, to larger extent, explains the formations of sturucture, magnetic behaviour of coordination compounds. It contains the following shortcomings:

1. It involves a number of assumption.

2. It does not give quantitative interpretaion of magnetic data.

3. It does not explain the colour exhibited by coordination number.

4. It does not distinguish between weak and strong ligands.



Example 6. ${\left[ {Cu{{(N{H_3})}_4}} \right]^{2 + }}$



Explanation: Here $C{u^{2 + }}$ is strong ligand. Hybridisation is $s{p^2}d$ with square planar geometry.



Special Case:

Example 7. ${\left[ {Ni{{(N{H_3})}_6}} \right]^{ + 2}}$



Explanation: Here $N{i^{2 + }}$ is a strong ligand. So, it has an unpaired electron. Hybridisation is $s{p^3}{d^2}$ with geometry octahedral complex.

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD