Physics > Basic Modern Physics > 8.0 Force exerted by a light beam on a surface

  Basic Modern Physics
    1.0 Photon theory of light
    2.0 Characteristics of photon
    3.0 Wave Particle Duality
    4.0 Emission of electrons
    5.0 Photoelectric Effect
    6.0 Radiation Pressure And Force
    7.0 Photon Density
    8.0 Force exerted by a light beam on a surface
    9.0 Early Atomic Structures
    10.0 Bohr Model of The Hydrogen Atom
    11.0 Energy of electron in the $n^{th}$ orbit
    12.0 Basic Definitions
    13.0 Atomic Excitation

8.1 Surface exposed to normal radiation
Energy incident per unit time $ = IA$

$$\begin{equation} \begin{aligned} {\text{Number of photons emitted per unit time}}\quad N = \frac{{IA}}{{hf}} = \frac{{IA\lambda }}{{hc}} \\ \\\end{aligned} \end{equation} $$

Case 1. The whole amount of radiation incident is absorbed by the surface.Case 2. The whole amount of radiation incident is reflected by the surface.Case 3. Some part of incident radiation is absorbed and rest is reflected by the surface.
So, $a = 1$ and $b = 0$.

$$\begin{equation} \begin{aligned} {\text{Initial momentum of one photon}} = \frac{h}{\lambda }{\text{ and}} \\ \\\end{aligned} \end{equation} $$
$$\text{Final momentum of one photon} = 0$$
$$\begin{equation} \begin{aligned} {\text{Total change in momentum of one photon}} = \frac{h}{\lambda } \\ \\\end{aligned} \end{equation} $$
Therefore, force on photons = Total change in momentum per unit time
$$\begin{equation} \begin{aligned} = N\frac{h}{\lambda } = \frac{{IA\lambda }}{{hc}} \times \frac{h}{\lambda } = \frac{{IA}}{c} \\ \\\end{aligned} \end{equation} $$
Force on plate due to photons (from Newton Thirds Law),
$$\begin{equation} \begin{aligned} F = \frac{{IA}}{c} \\ \\\end{aligned} \end{equation} $$$$\begin{equation} \begin{aligned} {\text{Pressure}} = \frac{F}{A} = \frac{{IA}}{{Ac}} = \frac{I}{c} \\ \\\end{aligned} \end{equation} $$
So, $a = 0$ and $b = 1$.

$$\begin{equation} \begin{aligned} {\text{Initial momentum of one photon}} = \frac{h}{\lambda }{\text{ and}} \\ \\\end{aligned} \end{equation} $$$$\begin{equation} \begin{aligned} {\text{Initial momentum of one photon}} = \frac{h}{\lambda } \\ \\\end{aligned} \end{equation} $$
$$\begin{equation} \begin{aligned} {\text{Total change in momentum of one photon}} = \frac{{2h}}{\lambda } \\ \\\end{aligned} \end{equation} $$
Therefore, force on photons = Total change in momentum per unit time
$$\begin{equation} \begin{aligned} = N\frac{{2h}}{\lambda } = \frac{{IA\lambda }}{{hc}} \times \frac{{2h}}{\lambda } = \frac{{2IA}}{c} \\ \\\end{aligned} \end{equation} $$

Force on plate due to photons(from Newton Thirds Law),

$$\begin{equation} \begin{aligned} F = \frac{{2IA}}{c} \\ \\\end{aligned} \end{equation} $$
$$\begin{equation} \begin{aligned} {\text{Pressure}} = \frac{F}{A} = \frac{{2IA}}{{Ac}} = \frac{{2I}}{c} \\ \\\end{aligned} \end{equation} $$
So, $0 < a < 1$ and $0 < r< 1$.


Force on plate = Force due to absorbed photons (${F_a}$) + Force due to reflected photons (${F_r}$)
$$\begin{equation} \begin{aligned} = {F_a} \times (1 - r) + {F_r} \times r \\ = \frac{{IA}}{c}(1 - r) + \frac{{2IAr}}{c} \\ = \frac{{IA}}{c}(1 + r) \\\end{aligned} \end{equation} $$
$$\begin{equation} \begin{aligned} {\text{Pressure}} = \frac{F}{A} = \frac{I}{c}(1 + r) \\ \\\end{aligned} \end{equation} $$

Question 8. (a) How many photons of a radiation of wavelength $\lambda = 5 \times {10^{ - 7}}\ m$ must fall per second on blackened plate in order to produce a force of $$6.62 \times {10^{ - 5}}\ N$$
(b) At what rate will the temperature of plate rise if its mass is $19.86$ $kg$ and specific heat is equal to $2500 J$ ( $kg{K^{ - 1}}$ )?

Solution: (a) If $n$ is the number of photons falling per second on the plate, then the momentum per second of the incident photons is $$\begin{equation} \begin{aligned} P = n \times \frac{h}{\lambda } \\ \\\end{aligned} \end{equation} $$
Since the plate is blackened, all photons are absorbed by it.
$$\begin{equation} \begin{aligned} {\text{Since}} \\ \quad \quad \quad F = \frac{{\Delta P}}{{\Delta t}} = n\frac{h}{\lambda }\quad \Rightarrow \quad n = \frac{{F\lambda }}{h} \\ {\text{or }}\quad {\text{ }}n = \frac{{\left( {6.62 \times {{10}^{ - 5}}} \right)\left( {5 \times {{10}^{ - 7}}} \right)}}{{6.62 \times {{10}^{ - 34}}}} = 5 \times {10^{22}} \\\end{aligned} \end{equation} $$


(b) Energy of each photon = $hc$/$\lambda $

Since $n$ photons fall on the plate per second, the total energy absorbed by the plates in one second is

$$\begin{equation} \begin{aligned} \quad \quad \quad E = n \times \frac{{hc}}{\lambda } = 1986\ J{s^{ - 1}} \\ {\text{i}}{\text{.e, }}\quad {\text{ }}\frac{{dQ}}{{dt}} = 1986\ J{s^{ - 1}} \\ \quad \quad \quad mc\frac{{dT}}{{dt}} = 1986 \\ \; \Rightarrow \quad \quad \frac{{dT}}{{dt}} = \frac{{1986}}{{19.86 \times 2500}} = 4 \times {10^{ - 2}}\ \ \ \ \ {}^0C{s^{ - 1}}\\\end{aligned} \end{equation} $$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD