Chemistry > Ionic Equilibrium > 6.0 Salt Hydrolysis

  Ionic Equilibrium
    1.0 Reversible Reaction
    2.0 $pH$ Scale
    3.0 Arrehenius Theory of Electrolyte Ionization (Dissociation)
    4.0 Ionization of Water
    5.0 Determination of $pH$ of acids and bases
    6.0 Salt Hydrolysis
    7.0 Buffer Solution
    8.0 Solubility and Solubility Product

6.3 Salt of weak acid and weak base
$${\text{N}}{{\text{H}}_4}{\text{OH + }}C{H_3}COOH{\text{ }} \to {\text{ }}C{H_3}COO{\text{N}}{{\text{H}}_4}{\text{ + }}{{\text{H}}_2}O$$

The salt would dissolve as $$C{H_3}COO{\text{N}}{{\text{H}}_4}{\text{ }} \to {\text{ }}N{H_4}^ + {\text{ + }}C{H_3}CO{O^ - }{\text{ }}$$

and the hydrolysis is shown as

$$C{H_3}CO{O^ - }{\text{ + }}N{H_4}^ + {\text{ + }}{H_2}O \rightleftharpoons {\text{N}}{{\text{H}}_4}{\text{OH}}{\text{ + }}C{H_3}COOH$$

${C(1 - \alpha )}$ ${C(1 - \alpha )}$ ${C\alpha }$ ${C\alpha }$

The hyrolysis constant is given as

$${K_h} = \frac{{\left[ {C{H_3}COOH} \right]\left[ {{\text{N}}{{\text{H}}_4}{\text{OH}}} \right]}}{{\left[ {C{H_3}CO{O^ - }} \right]\left[ {N{H_4}^ + } \right]}}$$

and $${K_h} = \frac{{Kw}}{{{K_a}{K_b}}} = \frac{{C\alpha \times C\alpha }}{{C(1 - \alpha )C(1 - \alpha )}}$$

$$\frac{\alpha }{{1 - \alpha }} = \sqrt {\frac{{Kw}}{{{K_a}{K_b}}}} $$

The acetic acid formed would partially decompose to give ${C{H_3}CO{O^ - }}$ and ${{H^ + }}$. But, because of common ion effect ( which is due to unhydrolyzsed ${C{H_3}CO{O^ - }}$) it is possible to neglect the acetate ion coming from $C{H_3}COOH$.

Therefore,

$$C{H_3}COOH \rightleftharpoons {C{H_3}CO{O^ - }}{\text{ + }}{H^ + }$$
${C\alpha }$ ${C(1 - \alpha )}$
$${K_a} = \frac{{C(1 - \alpha )\left[ {{H^ + }} \right]}}{{C\alpha }}$$
Neglecting $\alpha $,$${K_a} = \frac{{\left[ {{H^ + }} \right]}}{\alpha }$$
$$\left[ {{H^ + }} \right] = {K_a}\alpha = {K_a}\sqrt {\frac{{Kw}}{{{K_a}{K_b}}}} = \sqrt {\frac{{Kw{K_a}}}{{{K_b}}}} {\text{ }}$$

NOTE : If ${K_a}{\text{ > }}{K_b}$, the solution would be acidic,

${K_a}{\text{ < }}{K_b}$, the solution would be basic, and

${K_a}{\text{ = }}{K_b}$, the solution would be neutral.


Example 4. When $0.2M{\text{ }}C{H_3}COOH$ is neutralised with $0.2M{\text{ }}NaOH$ in $0.5L$ of water, the resolving solution is slightly alkaline. Calculate $pH$ of resulting solution. ${K_a}(C{H_3}COOH) = 1.8 \times {10^{ - 5}}$

Solution: $$C{H_3}CO{O^ - }{\text{ + }}{H_2}O \rightleftharpoons C{H_3}COOH{\text{ + }}O{H^ - }$$

${C(1 - \alpha )}$ ${C\alpha }$ ${C\alpha }$
where $\alpha $ is the degree of hydrolysis.

$${K_h} = \frac{{C{\alpha ^2}}}{{1 - \alpha }}$$

For $\alpha \ll 1$, ${K_h} = C{\alpha ^2}$
$${K_h} = \frac{{{K_w}}}{{{K_a}}} = \frac{{1 \times {{10}^{ - 14}}}}{{1.8 \times {{10}^{ - 5}}}} = 5.5 \times {10^{ - 10}}$$

So, $${K_h} = C{\alpha ^2} = 5.5 \times {10^{ - 10}}$$

or, $${\alpha ^2} = 27.5 \times {10^{ - 10}}$$$$\alpha = 5.25 \times {10^{ - 5}}$$
$$\therefore \left[ {{H^ + }} \right] = \frac{{{K_w}}}{{\left[ {O{H^ - }} \right]}} = \frac{{{{10}^{ - 14}}}}{{C\alpha }} = \frac{{C\alpha }}{{1.05 \times {{10}^{ - 5}}}} = 0.952 \times {10^{ - 9}}M$$

$$pH = - \log \left[ {{H^ + }} \right] = - \log (0.952 \times {10^{ - 9}}) = 8.98$$


Example 5. Calculate amount of ammonium chloride required to dissolve in $500{\text{ }}ml$ water to have $pH = 4.5$ (${{K_b}}$ for $N{H_4}OH = 1.8 \times {10^{ - 5}}$)

Solution. $$\left[ {{H^ + }} \right] = {10^{ - pH}} = {10^{ - 4.5}} = 3.162 \times {10^{ - 5}}M$$

$$N{H_4}^ + {\text{ + }}{H_2}O \rightleftharpoons {\text{N}}{{\text{H}}_4}{\text{OH}}{\text{ + }}{{H^ + }}$$

${C(1 - \alpha )}$ ${C\alpha }$ ${C\alpha }$

${K_h} = C{\alpha ^2}$, for $\alpha \ll 1$

$${K_h} = \frac{{{K_w}}}{{{K_a}}} = \frac{{1 \times {{10}^{ - 14}}}}{{1.8 \times {{10}^{ - 5}}}} = 5.5 \times {10^{ - 10}}$$

$$\therefore \alpha = \frac{{{K_h}}}{{C\alpha }} = \frac{{{K_h}}}{{\left[ {{H^ + }} \right]}} = \frac{{5.5 \times {{10}^{ - 10}}}}{{3.162 \times {{10}^{ - 5}}}} = 1.74 \times {10^{ - 5}}$$

$$C = \frac{{\left[ {{H^ + }} \right]}}{\alpha } = \frac{{3.162 \times {{10}^{ - 5}}}}{{1.74 \times {{10}^{ - 5}}}} = 1.8{\text{ }}mol{L^{ - 1}}$$

i.e. $1.8/2 = 0.9$ mole in $500{\text{ ml}}$ water
Mass in grams is $$ = 0.9 \times 53.5 = 48.15{\text{ }}g$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD