Chemistry > Ionic Equilibrium > 5.0 Determination of $pH$ of acids and bases

  Ionic Equilibrium
    1.0 Reversible Reaction
    2.0 $pH$ Scale
    3.0 Arrehenius Theory of Electrolyte Ionization (Dissociation)
    4.0 Ionization of Water
    5.0 Determination of $pH$ of acids and bases
    6.0 Salt Hydrolysis
    7.0 Buffer Solution
    8.0 Solubility and Solubility Product

5.2 Weak acid
These are the acids which dissociate weakly in water. For example,
$$C{H_3}COOH{\text{ }} \rightleftharpoons {\text{ }}C{H_3}CO{O^ - }{\text{ + }}{{\text{H}}^ + }$$
The equilibrium constant for this is given by $${K_a}{\text{ = }}\frac{{\left[ {C{H_3}CO{O^ - }} \right]\left[ {{H^ + }} \right]}}{{\left[ {C{H_3}COOH} \right]}}$$

Let initial moles of acetic acid be $C$ and $\alpha $ is the degree of dissociation which is defined as the number of moles of acetic acid which dissociates from one mole of acetic acid, then the number of moles dissociated would be $C\alpha $.
$$C{H_3}COOH{\text{ }} \rightleftharpoons {\text{ }}C{H_3}CO{O^ - }{\text{ + }}{{\text{H}}^ + }$$

Initial $C$ $0$ $0$
At equilibrium $C - C\alpha $ $C\alpha $ $C\alpha $

$${K_a}{\text{ = }}\frac{{\left[ {C{H_3}CO{O^ - }} \right]\left[ {{H^ + }} \right]}}{{\left[ {C{H_3}COOH} \right]}}{\text{ = }}\frac{{C\alpha \times C\alpha }}{{C(1 - \alpha )}}{\text{ = }}\frac{{C{\alpha ^2}}}{{1 - \alpha }}$$

Note: If $\alpha \leqslant 0.05$, then $\alpha $ can be ignored in comparison to $1$

Therefore, from above equation, we get
$${K_a} = C{\alpha ^2}$$ or, $$\alpha = \sqrt {\frac{{{K_a}}}{C}} $$

We can thus calculate the concentration of ${H^ + }$ coming from the acid as
$${\left[ {{H^ + }} \right]_A} = C\alpha = C \times \sqrt {\frac{{{K_a}}}{C}} = \sqrt {{K_a} \times C} $$


Example 3. For $10M{\text{ C}}{{\text{H}}_3}COOH$ solution if ${K_a} = {10^{ - 5}}$, then find out

(i) $\alpha $
(ii) $\left[ {{H^ + }} \right]$
(iii) $pH$

Solution: (i) Given that $C = 10M$ and ${K_a} = {10^{ - 5}}$

Degree of ionization is $$\alpha = \sqrt {\frac{{{K_a}}}{C}} = \sqrt {\frac{{{{10}^{ - 5}}}}{{10}}} = {10^{ - 3}}$$

(ii) $${\left[ {{H^ + }} \right]_A} = C\alpha = 10 \times {10^{ - 3}} = {10^{ - 2}}$$

(iii) $$pH = - \log \left[ {{H^ + }} \right] = - \log {10^{ - 2}} = 2$$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD