Physics > Sound Waves > 4.0 Doppler's Effect

  Sound Waves
    1.0 Introduction
    2.0 Displacement and pressure Waves
    3.0 Speed of a longitudinal Wave
    4.0 Doppler's Effect
    5.0 Application of doppler's effect in different situations
    6.0 Doppler's effect in two dimension
    7.0 Characteristic of Sound waves

4.1 Different case of Doppler's Effect
4.1.1 Case I: When source moves towards the observer and observer is at rest

Source $S$ moves towards observer $O$ which is at rest.

Velocity of source $ = {\vec v_s} = {v_s}\widehat i$
Velocity of sound $ = {\vec v_w} = v\widehat i$
Velocity of sound relative to the source $ = {\vec v_{ws}}$

So, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - {{\vec v}_s} \\ {{\vec v}_{ws}} = v\widehat i - {v_s}\widehat i \\ {{\vec v}_{ws}} = \left( {v - {v_s}} \right)\widehat i \\\end{aligned} \end{equation} $$ Frequency emitted by the source $=f$

Due the motion of the source wavelength is modified.

So, wavelength of sound wave is, $$\begin{equation} \begin{aligned} \lambda ' = \frac{{{\text{velocity of sound relative to the source}}}}{f} \\ \lambda ' = \left( {\frac{{v - {v_s}}}{f}} \right)\quad ...(i) \\\end{aligned} \end{equation} $$

Velocity of observer $ = {\vec v_o} = 0$
Velocity of sound $ = {\vec v_w} = v\widehat i$
Velocity of sound relative to the observer $ = {\vec v_{wo}}$

So, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = v\hat i - 0 \\ {{\vec v}_{wo}} = v\hat i \\\end{aligned} \end{equation} $$ Let the frequency observed by observer be $f'$

Wavelength of sound wave is, $$\begin{equation} \begin{aligned} \lambda ' = \frac{{{\text{velocity of sound relative to the observer}}}}{{f'}} \\ f' = \left( {\frac{v}{{\lambda '}}} \right)\quad ...(ii) \\\end{aligned} \end{equation} $$ From equation $(i)$ and $(ii)$ we get, $$f' = \left( {\frac{v}{{v - {v_s}}}} \right)f$$

4.1.2 Case II: When source moves away from the observer and observer is at rest

Source $S$ moves away from the observer $O$ which is at rest.

Velocity of source $ = {\vec v_s} = -{v_s}\widehat i$
Velocity of sound $ = {\vec v_w} = v\widehat i$
Velocity of sound relative to the source $ = {\vec v_{ws}}$

So, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - {{\vec v}_s} \\ {{\vec v}_{ws}} = v\hat i - \left( { - {v_s}\hat i} \right) \\ {{\vec v}_{ws}} = \left( {v + {v_s}} \right)\hat i \\\end{aligned} \end{equation} $$ Frequency emitted by the source $=f$

Due the motion of the source wavelength is modified.

So, wavelength of sound wave is, $$\begin{equation} \begin{aligned} \lambda ' = \frac{{{\text{velocity of sound relative to the source}}}}{f} \\ \lambda ' = \left( {\frac{{v + {v_s}}}{f}} \right)\quad ...(i) \\\end{aligned} \end{equation} $$

Velocity of observer $ = {\vec v_o} = 0$
Velocity of sound $ = {\vec v_w} = v\widehat i$
Velocity of sound relative to the observer $ = {\vec v_{wo}}$

So, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = v\hat i - 0 \\ {{\vec v}_{wo}} = v\hat i \\\end{aligned} \end{equation} $$ Let the frequency observed by observer be $f'$

Wavelength of sound wave is, $$\begin{equation} \begin{aligned} \lambda ' = \frac{{{\text{velocity of sound relative to the observer}}}}{{f'}} \\ f' = \left( {\frac{v}{{\lambda '}}} \right)\quad ...(ii) \\\end{aligned} \end{equation} $$ From equation $(i)$ and $(ii)$ we get, $$f' = \left( {\frac{v}{{v + {v_s}}}} \right)f$$

4.1.3 Case III: When source is at rest and the observer moves towards the source

Observer $O$ moves towards the source $S$ which is at rest.

Velocity of source $ = {\vec v_s} = 0$
Velocity of sound $ = {\vec v_w} = v\widehat i$
Velocity of sound relative to the source $ = {\vec v_{ws}}$

So, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - 0 \\ {{\vec v}_{ws}} = v\hat i - 0 \\ {{\vec v}_{ws}} = v\hat i \\\end{aligned} \end{equation} $$ Frequency emitted by the source $=f$

Wavelength of the sound wave is, $$\begin{equation} \begin{aligned} \lambda = \frac{{{\text{velocity of sound relative to the source}}}}{f} \\ \lambda = \left( {\frac{v}{f}} \right)\quad ...(i) \\\end{aligned} \end{equation} $$
Velocity of observer $ = {{\vec v}_o} = - v\widehat i$
Velocity of sound $ = {\vec v_w} = v\widehat i$
Velocity of sound relative to the observer $ = {\vec v_{wo}}$

So, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = v\hat i - \left( { - {v_o}\widehat i} \right) \\ {{\vec v}_{wo}} = \left( {v + {v_o}} \right)\hat i \\\end{aligned} \end{equation} $$ Let the frequency observed by observer be $f'$

Wavelength of sound wave is, $$\begin{equation} \begin{aligned} \lambda = \frac{{{\text{velocity of sound relative to the observer}}}}{{f'}} \\ f' = \left( {\frac{{v + {v_o}}}{\lambda }} \right)\quad ...(ii) \\\end{aligned} \end{equation} $$ From equation $(i)$ and $(ii)$ we get, $$f' = \left( {\frac{{v + {v_o}}}{v}} \right)f$$

Case IV: When source is at rest and the observer moves away from the source

Observer $O$ moves away from the source $S$ which is at rest.

Velocity of source $ = {\vec v_s} = 0$
Velocity of sound $ = {\vec v_w} = v\widehat i$
Velocity of sound relative to the source $ = {\vec v_{ws}}$

So, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - 0 \\ {{\vec v}_{ws}} = v\hat i - 0 \\ {{\vec v}_{ws}} = v\hat i \\\end{aligned} \end{equation} $$ Frequency emitted by the source $=f$

Wavelength of the sound wave is, $$\begin{equation} \begin{aligned} \lambda = \frac{{{\text{velocity of sound relative to the source}}}}{f} \\ \lambda = \left( {\frac{v}{f}} \right)\quad ...(i) \\\end{aligned} \end{equation} $$
Velocity of observer $ = {{\vec v}_o} = v\widehat i$
Velocity of sound $ = {\vec v_w} = v\widehat i$
Velocity of sound relative to the observer $ = {\vec v_{wo}}$

So, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = v\hat i - {v_o}\widehat i \\ {{\vec v}_{wo}} = \left( {v - {v_o}} \right)\hat i \\\end{aligned} \end{equation} $$ Let the frequency observed by observer be $f'$

Wavelength of sound wave is, $$\begin{equation} \begin{aligned} \lambda = \frac{{{\text{velocity of sound relative to the observer}}}}{{f'}} \\ f' = \left( {\frac{{v - {v_o}}}{\lambda }} \right)\quad ...(ii) \\\end{aligned} \end{equation} $$ From equation $(i)$ and $(ii)$ we get, $$f' = \left( {\frac{{v - {v_o}}}{v}} \right)f$$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD