Physics > Sound Waves > 2.0 Displacement and pressure Waves

  Sound Waves
    1.0 Introduction
    2.0 Displacement and pressure Waves
    3.0 Speed of a longitudinal Wave
    4.0 Doppler's Effect
    5.0 Application of doppler's effect in different situations
    6.0 Doppler's effect in two dimension
    7.0 Characteristic of Sound waves

2.2 Relation between pressure wave and density wave

According to the definition of bulk modulus $(B)$, $$B = \left( { - \frac{{dP}}{{dV/V}}} \right)$$ or $$\frac{{dV}}{V} = - \frac{{dP}}{B}\quad ...(i)$$ Also, $${\text{Volume = }}\frac{{{\text{Mass}}}}{{{\text{Density}}}}$$ So, $$V = \frac{m}{\rho }$$ Differentiating the above equation we get, $$\begin{equation} \begin{aligned} \frac{{dV}}{{d\rho }} = - \frac{m}{{{\rho ^2}}} \\ \frac{{dV}}{{d\rho }} = - \frac{1}{\rho }\left( {\frac{m}{\rho }} \right) \\ \frac{{dV}}{{d\rho }} = - \frac{V}{\rho }\quad \quad \left( {As,V = \frac{m}{\rho }} \right) \\ \frac{{dV}}{V} = - \frac{{d\rho }}{\rho }\quad ...(ii) \\\end{aligned} \end{equation} $$ From equation $(i)$ & $(ii)$ we get, $$\begin{equation} \begin{aligned} \frac{{d\rho }}{\rho } = \frac{{dP}}{B} \\ d\rho = \frac{\rho }{B}\left( {dP} \right) \\\end{aligned} \end{equation} $$ The above equation can also be written as, $$\Delta \rho = \frac{\rho }{B}\left( {\Delta P} \right)$$ or $$\Delta \rho = \frac{{\left( {\Delta P} \right)}}{{{v^2}}}\quad \quad \left( {As,v = \sqrt {\frac{B}{\rho }} } \right)$$ As we know, $$\Delta P = {\left( {\Delta P} \right)_m}\sin \left( {kx - \omega t} \right)$$ So, density equation can be written as, $$\Delta \rho = {\left( {\Delta \rho } \right)_m}\sin \left( {kx - \omega t} \right)$$ where, $${\left( {\Delta \rho } \right)_m} = \frac{\rho }{B}{\left( {\Delta P} \right)_m}\quad or\quad {\left( {\Delta \rho } \right)_m} = \frac{{{{\left( {\Delta P} \right)}_m}}}{{{v^2}}}\quad $$

Note:

  • Density equation is in phase with the pressure equation
  • Density equation is $90^\circ $ out of phase with the displacement equation


Question 1. (a)What is the displacement amplitude for a sound wave having a frequency of $100Hz$ and a pressure amplitude of $10Pa$?

(b) The displacement amplitude of a sound wave of frequency $300Hz$ is ${10^{ - 7}}m$. What is the pressure amplitude of this wave? Speed of sound in air is $340m/s$ and density of air is $1.29kg/{m^3}$.


Solution:

(a)$${(\Delta P)_m} = BAk$$Here,$$k = \frac{\omega }{v} = \frac{{2\pi f}}{v}$$and$$B = \rho {v^2}$$$$\therefore {(\Delta P)_m} = (\rho {v^2})(A)\left( {\frac{{2\pi f}}{v}} \right)$$$$\therefore A = \frac{{{{(\Delta P)}_m}}}{{2\pi f\rho v}}....(i)$$

Substituting the values, $$A = \frac{{10}}{{2 \times 3.14 \times 100 \times 1.29 \times 340}}$$$$ = 3.63 \times {10^{ - 5}}m$$

(b) From equation $(i)$,$${\left( {\Delta P} \right)_m} = 2\pi f\rho vA$$Substituting the values,$${\left( {\Delta P} \right)_m} = 2 \times 3.14 \times 300 \times 1.29 \times 340 \times {10^{ - 7}}$$$$ = 8.26 \times {10^{ - 2}}N/{m^2}$$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD