Physics > Sound Waves > 6.0 Doppler's effect in two dimension

  Sound Waves
    1.0 Introduction
    2.0 Displacement and pressure Waves
    3.0 Speed of a longitudinal Wave
    4.0 Doppler's Effect
    5.0 Application of doppler's effect in different situations
    6.0 Doppler's effect in two dimension
    7.0 Characteristic of Sound waves

6.4 Questions
Question 3. A source of sound which emits a sound of frequency 600 $Hz$ is moving towards a wall with a velocity of $30\ m/s$. Two observers $A$ & $B$ moving with velocity $20\ m/s$ as shown in the figure. Velocity of sound in air is $330\ m/s$.

(a) Find the frequency of direct sound observed by observer $A$.
(b) Find the frequency of direct sound observed by observer $B$.
(c) Find the frequency of reflected sound observed by observer $A$.
(d) Find the frequency of reflected sound observed by observer $B$.

Solution: (a)

Velocity of sound, ${\vec v_w} = - 330\;\widehat i$
Velocity of source, ${\vec v_s} = 30\;\widehat i$
Velocity of observer $A$, ${\vec v_o} = - 20\;\widehat i$

Velocity of sound relative to observer $\left( {{{\vec v}_{wo}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = - 310\;\widehat i \\\end{aligned} \end{equation} $$

Velocity of sound relative to source $\left( {{{\vec v}_{ws}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - {{\vec v}_s} \\ {{\vec v}_{ws}} = - 360\;\widehat i \\\end{aligned} \end{equation} $$

Frequency of direct sound observed by observer $A$, $$\begin{equation} \begin{aligned} f' = \left( {\frac{{{{\vec v}_{wo}}}}{{{{\vec v}_{ws}}}}} \right)f = \left( {\frac{{ - 310}}{{ - 360}}} \right)(600) \\ f' = 516.67\;Hz \\\end{aligned} \end{equation} $$

(b)

Velocity of sound, ${\vec v_w} = 330\;\widehat i$
Velocity of source, ${\vec v_s} = 30\;\widehat i$
Velocity of observer $B$, ${\vec v_o} = 20\;\widehat i$

Velocity of sound relative to observer $\left( {{{\vec v}_{wo}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = 310\;\widehat i \\\end{aligned} \end{equation} $$

Velocity of sound relative to source $\left( {{{\vec v}_{ws}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - {{\vec v}_s} \\ {{\vec v}_{ws}} = 300\;\widehat i \\\end{aligned} \end{equation} $$

Frequency of direct sound observed by observer $A$, $$\begin{equation} \begin{aligned} f' = \left( {\frac{{{{\vec v}_{wo}}}}{{{{\vec v}_{ws}}}}} \right)f = \left( {\frac{{310}}{{ 300}}} \right)(600) \\ f' = 620\;Hz \\\end{aligned} \end{equation} $$

(c)

Velocity of sound, ${\vec v_w} = 330\;\widehat i$
Velocity of source, ${\vec v_s} = 30\;\widehat i$
Velocity of observer (wall), ${\vec v_o} = 0$

Velocity of sound relative to observer $\left( {{{\vec v}_{wo}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = 330\;\widehat i \\\end{aligned} \end{equation} $$

Velocity of sound relative to source $\left( {{{\vec v}_{ws}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - {{\vec v}_s} \\ {{\vec v}_{ws}} = 300\;\widehat i \\\end{aligned} \end{equation} $$

Frequency of sound at wall, $$\begin{equation} \begin{aligned} f' = \left( {\frac{{{{\vec v}_{wo}}}}{{{{\vec v}_{ws}}}}} \right)f = \left( {\frac{{ 330}}{{ 300}}} \right)(600) \\ f' = 660\;Hz \\\end{aligned} \end{equation} $$

Frequecy of sound refected by wall is 660 $Hz$ (Wall does not change the frequency).

Velocity of sound, ${\vec v_w} = -330\;\widehat i$
Velocity of source (wall), ${\vec v_s} = 0$
Velocity of observer $A$ (wall), ${{\vec v}_o} = - 20\;\hat i$

Velocity of sound relative to observer $\left( {{{\vec v}_{wo}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = - 310\;\hat i \\\end{aligned} \end{equation} $$

Velocity of sound relative to source $\left( {{{\vec v}_{ws}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - {{\vec v}_s} \\ {{\vec v}_{ws}} = -330\;\widehat i \\\end{aligned} \end{equation} $$

Frequency of sound at wall, $$\begin{equation} \begin{aligned} f'' = \left( {\frac{{{{\vec v}_{wo}}}}{{{{\vec v}_{ws}}}}} \right)f = \left( {\frac{{ -310}}{{ -330}}} \right)(660) \\ f'' = 620\;Hz \\\end{aligned} \end{equation} $$

(d)

Velocity of sound, ${\vec v_w} = -330\;\widehat i$
Velocity of source (wall), ${\vec v_s} = 0$
Velocity of observer $B$ (wall), ${{\vec v}_o} = 20\;\hat i$

Velocity of sound relative to observer $\left( {{{\vec v}_{wo}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = - 350\;\hat i \\\end{aligned} \end{equation} $$

Velocity of sound relative to source $\left( {{{\vec v}_{ws}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - {{\vec v}_s} \\ {{\vec v}_{ws}} = -330\;\widehat i \\\end{aligned} \end{equation} $$

Frequency of sound at wall, $$\begin{equation} \begin{aligned} f'' = \left( {\frac{{{{\vec v}_{wo}}}}{{{{\vec v}_{ws}}}}} \right)f = \left( {\frac{{ -350}}{{ -330}}} \right)(660) \\ f'' = 700\;Hz \\\end{aligned} \end{equation} $$

Question 4. A car approaching a crossing at a speed of $20m/s$ sounds a horn of frequency $500 Hz$ when $80m$ from the crossing. Speed of sound in air is $330 m/s$. What frequency is heard by an observer $60m$ from the crossing on the straight road which crosses car road at right angles?





Solution:

Velocity of sound, ${\vec v_w} = \;{v_w}\;\hat i$
Velocity of source, ${\vec v_s} = {v_s}\cos \theta \;\hat i$
Velocity of observer , ${\vec v_o} = 0$

Velocity of sound relative to observer $\left( {{{\vec v}_{wo}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = {v_w}\;\hat i \\\end{aligned} \end{equation} $$

Velocity of sound relative to source $\left( {{{\vec v}_{ws}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{ws}} = {{\vec v}_w} - {{\vec v}_s} \\ {{\vec v}_{ws}} = \left( {{v_w} - {v_s}\cos \theta } \right)\;\hat i \\\end{aligned} \end{equation} $$

Frequency of sound observed by observer, $$\begin{equation} \begin{aligned} f' = \left( {\frac{{{{\vec v}_{wo}}}}{{{{\vec v}_{ws}}}}} \right)f \\ f' = \left( {\frac{{{v_w}}}{{{v_w} - {v_s}\cos \theta }}} \right)f \\ f' = \left( {\frac{{330}}{{330 - 20\left( {\frac{{80}}{{100}}} \right)}}} \right)(500) \\ f' = 525.47\;Hz \\\end{aligned} \end{equation} $$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD