Physics > Sound Waves > 6.0 Doppler's effect in two dimension

  Sound Waves
    1.0 Introduction
    2.0 Displacement and pressure Waves
    3.0 Speed of a longitudinal Wave
    4.0 Doppler's Effect
    5.0 Application of doppler's effect in different situations
    6.0 Doppler's effect in two dimension
    7.0 Characteristic of Sound waves

6.2 When the medium also moves with source and observer
Before understanding the effect of motion of medium on doppler's effect, lets understand some basic terminologies.

As we know, $$\begin{equation} \begin{aligned} {\overrightarrow v _{wm}} = {\overrightarrow v _w} - {\overrightarrow v _m} \\ {\overrightarrow v _w} = {\overrightarrow v _{wm}} + {\overrightarrow v _m} \\\end{aligned} \end{equation} $$
where,

${\overrightarrow v _{w}} = $ Net velocity of sound
Note: ${\overrightarrow v _{w}} = $ includes the effect of actual velocity of sound and the velocity of the medium

${\overrightarrow v _{m}} = $ Velocity of medium

${\overrightarrow v _{wm}} = $ Velocity of sound relative to medium.
Note: ${\overrightarrow v _{wm}} $ is also known as the actual velocity of sound. In question always ${\overrightarrow v _{wm}} $ is given.

So, we have to calculate ${\overrightarrow v _{w}} $ and apply doppler effect.

6.2.1 When the medium moves towards the observer





Actual velcoity of sound, ${\overrightarrow v _{wm}} = v\widehat i$
Velocity of medium, ${\overrightarrow v _{wm}} = {v_m}\widehat i$
Net velocity of sound, ${\overrightarrow v _{w}} $

So, $$\begin{equation} \begin{aligned} {{\vec v}_{wm}} = {{\vec v}_w} - {{\vec v}_m} \\ {{\vec v}_w} = {{\vec v}_{wm}} + {{\vec v}_m} \\ {{\vec v}_w} = \left( {v + {v_m}} \right)\hat i\quad ...(i) \\\end{aligned} \end{equation} $$
Velocity of source, ${\overrightarrow v _s} = {v_s}\widehat i$
Velocity of sound, ${\overrightarrow v _w} = {v_w}\widehat i$
Velocity of sound relative to source $\left( {{{\overrightarrow v }_{ws}}} \right)$, $$\begin{equation} \begin{aligned} {\overrightarrow v _{ws}} = {\overrightarrow v _w} - {\overrightarrow v _s} \\ {\overrightarrow v _{ws}} = \left( {{v_w} - {v_s}} \right)\hat i\quad ...(ii) \\\end{aligned} \end{equation} $$
Velocity of observer, ${{\vec v}_o} = - {v_o}\widehat i$
Velocity of sound, ${\overrightarrow v _w} = {v_w}\widehat i$
Velocity of sound relative to observer $\left( {{{\overrightarrow v }_{wo}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = \left( {{v_w} + {v_o}} \right)\hat i\quad ...(iii) \\\end{aligned} \end{equation} $$
Also, we know, $$f' = \left( {\frac{{{{\vec v}_{wo}}}}{{{{\vec v}_{ws}}}}} \right)f\quad ...(iv)$$ From equation $(ii),(iii)$ & $(iv)$ we get, $$f' = \left( {\frac{{{v_w} + {v_o}}}{{{v_w} - {v_s}}}} \right)f$$ or $$f' = \left( {\frac{{v + {v_m} + {v_o}}}{{v + {v_m} - {v_s}}}} \right)f$$

6.2.2 When the medium moves away from the observer



Actual velcoity of sound, ${\overrightarrow v _{wm}} = v\widehat i$
Velocity of medium, ${\overrightarrow v _{wm}} = -{v_m}\widehat i$
Net velocity of sound, ${\overrightarrow v _{w}} $

So, $$\begin{equation} \begin{aligned} {{\vec v}_{wm}} = {{\vec v}_w} - {{\vec v}_m} \\ {{\vec v}_w} = {{\vec v}_{wm}} + {{\vec v}_m} \\ {{\vec v}_w} = \left( {v - {v_m}} \right)\hat i\quad ...(i) \\\end{aligned} \end{equation} $$
Velocity of source, ${\overrightarrow v _s} = {v_s}\widehat i$
Velocity of sound, ${\overrightarrow v _w} = {v_w}\widehat i$
Velocity of sound relative to source $\left( {{{\overrightarrow v }_{ws}}} \right)$, $$\begin{equation} \begin{aligned} {\overrightarrow v _{ws}} = {\overrightarrow v _w} - {\overrightarrow v _s} \\ {\overrightarrow v _{ws}} = \left( {{v_w} - {v_s}} \right)\hat i\quad ...(ii) \\\end{aligned} \end{equation} $$
Velocity of observer, ${{\vec v}_o} = - {v_o}\widehat i$
Velocity of sound, ${\overrightarrow v _w} = {v_w}\widehat i$
Velocity of sound relative to observer $\left( {{{\overrightarrow v }_{wo}}} \right)$, $$\begin{equation} \begin{aligned} {{\vec v}_{wo}} = {{\vec v}_w} - {{\vec v}_o} \\ {{\vec v}_{wo}} = \left( {{v_w} + {v_o}} \right)\hat i\quad ...(iii) \\\end{aligned} \end{equation} $$

Also, we know, $$f' = \left( {\frac{{{{\vec v}_{wo}}}}{{{{\vec v}_{ws}}}}} \right)f\quad ...(iv)$$ From equation $(ii),(iii)$ & $(iv)$ we get, $$f' = \left( {\frac{{{v_w} + {v_o}}}{{{v_w} - {v_s}}}} \right)f$$ or $$f' = \left( {\frac{{v - {v_m} + {v_o}}}{{v - {v_m} - {v_s}}}} \right)f$$

Note: If both the source and observer are at rest then there is no effect on frequency due to motion of air.
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD