Maths > Three Dimensional Coordinate System > 3.0 Distance and Angle between lines and points.

  Three Dimensional Coordinate System
    1.0 Introduction
    2.0 Equation of a line in space
    3.0 Distance and Angle between lines and points.
    4.0 Plane
    5.0 Relation between Plane, Line and Point.
    6.0 Intersection of a line and a plane
    7.0 Image of a point in a plane

3.6 Distance between parallel lines

Let us assume the equation of two parallel lines be $$\begin{equation} \begin{aligned} {l_1} \equiv \overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow b \\ {l_2} \equiv \overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow b \\\end{aligned} \end{equation} $$
where $\overrightarrow {{a_1}} $ represents the position vector of a point $A$ on line ${l_1}$ and $\overrightarrow {{a_2}} $ represents the position vector of a point $B$ on line ${l_2}$ as shown in figure.

As both the lines are parallel which means they are coplanar also and if the foot of perpendicular from $B$ on the line ${l_1}$ is $P$, then the distance between parallel lines is $BP$.

Let us assume the angle between line $AB$ and line ${l_1}$ be $\theta $ which is also the angle between $\overrightarrow {AB} $ and $\overrightarrow b $. Therefore,
$$\overrightarrow b \times \overrightarrow {AB} = \left( {\left| {\overrightarrow b } \right|\left| {\overrightarrow {AB} } \right|\sin \theta } \right)\widehat n$$ where $\widehat n$ represents the unit vector perpendicular to the plane of both the lines ${l_1}$ and ${l_2}$. But $$\overrightarrow {AB} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} $$ Therefore, we get
$$\begin{equation} \begin{aligned} \overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right) = \left( {\left| {\overrightarrow b } \right|PB} \right)\widehat n{\text{ }}\left( {\because \left| {\overrightarrow {AB} } \right|\sin \theta } \right) \\ \therefore \left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right| = \left| {\overrightarrow b } \right|PB.1{\text{ }}\left( {\because \left| {\widehat n{\text{ }}} \right| = 1} \right) \\\end{aligned} \end{equation} $$ Hence, the distance between two parallel lines is $$d = \left| {\overrightarrow {PB} } \right| = \left| {\frac{{\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)}}{{\left| {\overrightarrow b } \right|}}} \right|$$

Question 7. Find the shortest distance between the lines $$\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}$$ and $$\frac{{x - 2}}{3} = \frac{{y - 4}}{4} = \frac{{z - 5}}{5}$$
Solution: On comparing the given equations with the cartesian form of line, we get $$\begin{equation} \begin{aligned} {x_1} = 1,{y_1} = 2,{z_1} = 3 \\ {a_1} = 2,{b_1} = 3,{c_1} = 4 \\ {x_2} = 2,{y_2} = 4,{z_2} = 5 \\ {a_2} = 3,{b_2} = 4,{c_2} = 5 \\\end{aligned} \end{equation} $$
As from the given equations, we can say that the lines are skew lines, so apply the formulae to find the distance between skew lines if the equation is given in cartesian form i.e.,
\[\left| {\frac{{\begin{array}{c} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\ {{a_1}}&{{b_1}}&{{c_1}} \\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}}}{{\sqrt {{{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2} + {{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2}} }}} \right|\]
Now, putting the values in the formulae we get,
\[\begin{gathered} \Rightarrow \frac{{\left| {\begin{array}{c} {2 - 1}&{4 - 2}&{5 - 3} \\ 2&3&4 \\ 3&4&5 \end{array}} \right|}}{{\sqrt {{{\left( {8 - 9} \right)}^2} + {{\left( {15 - 16} \right)}^2} + {{\left( {10 - 12} \right)}^2}} }} \hspace{1em} \\ \Rightarrow \frac{{\left| {\begin{array}{c} 1&2&2 \\ 2&3&4 \\ 3&4&5 \end{array}} \right|}}{{\sqrt 6 }} \hspace{1em} \\ \end{gathered} \]
$$\begin{equation} \begin{aligned} \Rightarrow \frac{{1(15 - 16) - 2(10 - 12) + 2(8 - 9)}}{{\sqrt 6 }} = \frac{1}{{\sqrt 6 }} \\ \\\end{aligned} \end{equation} $$

Question 8. Find the distance between the lines ${l_1}$ and ${l_2}$ given by $${l_1} \equiv \overrightarrow r = \widehat i + 2\widehat j - 4\widehat k + \lambda \left( {2\widehat i + 3\widehat j + 6\widehat k} \right)$$ and $${l_2} \equiv \overrightarrow r = 3\widehat i + 3\widehat j - 5\widehat k + \mu \left( {2\widehat i + 3\widehat j + 6\widehat k} \right)$$
Solution: On comparing the given equations of line with the vector form i.e., $$\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b $$ We get $$\overrightarrow {{a_1}} = \widehat i + 2\widehat j - 4\widehat k{\text{ }}\overrightarrow {{a_2}} = 3\widehat i + 3\widehat j - 5\widehat k{\text{ }}\overrightarrow b = 2\widehat i + 3\widehat j + 6\widehat k$$
Now, we can say that the lines are parallel as the parallel vector $\overrightarrow b $ is similar for both the lines. Now, we apply the formulae to find the distance between two parallel lines i.e., $$d = \left| {\frac{{\vec b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)}}{{\left| {\vec b} \right|}}} \right|$$
Put the values in the equation we get,
\[d = \left| {\frac{{\left| {\begin{array}{c} {\widehat i}&{\widehat j}&{\widehat k} \\ 2&3&6 \\ 2&1&{ - 1} \end{array}} \right|}}{{\sqrt {4 + 9 + 36} }}} \right|\]$$d = \frac{{\left| { - 9\widehat i + 14\widehat j - 4\widehat k} \right|}}{{\sqrt {49} }} = \frac{{\sqrt {293} }}{7}$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD