Maths > Three Dimensional Coordinate System > 3.0 Distance and Angle between lines and points.

  Three Dimensional Coordinate System
    1.0 Introduction
    2.0 Equation of a line in space
    3.0 Distance and Angle between lines and points.
    4.0 Plane
    5.0 Relation between Plane, Line and Point.
    6.0 Intersection of a line and a plane
    7.0 Image of a point in a plane

3.5 Distance between two skew lines

Let us assume the equation of two skew lines be $${l_1} \equiv \overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow {{b_1}} $$ and $${l_2} \equiv \overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow {{b_2}} $$
and $\overrightarrow {PQ} $ is perpendicular to both ${l_1}$ and ${l_2}$ as shown in figure. Therefore, we can say that $\overrightarrow {PQ} $ is the shortest distance vector between ${l_1}$ and ${l_2}$. Also $\overrightarrow {PQ} $ is parallel to $\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} $.

Now, let us assume $\widehat n$ to be the unit vector along $\overrightarrow {PQ} $, which can be written as $$\widehat n = \frac{{\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
$$\begin{equation} \begin{aligned} \therefore \overrightarrow {PQ} = {\text{projection of }}\overrightarrow {AB} {\text{ on }}\overrightarrow {PQ} \\ \Rightarrow \overrightarrow {PQ} = \overrightarrow {AB} .\widehat n \\ {\text{ = }} \pm \left( {{a_2} - {a_1}} \right).\frac{{\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}} \\ {\text{ = }} \pm \frac{{\left( {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right).\left( {{a_2} - {a_1}} \right)}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}} \\\end{aligned} \end{equation} $$
Hence, distance between two skew lines is $$PQ = \left| {\frac{{\left( {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right).\left( {{a_2} - {a_1}} \right)}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}} \right|$$

Now, if the equation of two skew lines are given in cartesian form i.e., $$\begin{equation} \begin{aligned} {l_1} \equiv \frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}} \\ {l_2} \equiv \frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}} \\\end{aligned} \end{equation} $$
Then the shortest distance between the lines is given by
\[\left| {\frac{{\begin{array}{c} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\ {{a_1}}&{{b_1}}&{{c_1}} \\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}}}{{\sqrt {{{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2} + {{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2}} }}} \right|\]
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD