Maths > Three Dimensional Coordinate System > 3.0 Distance and Angle between lines and points.

  Three Dimensional Coordinate System
    1.0 Introduction
    2.0 Equation of a line in space
    3.0 Distance and Angle between lines and points.
    4.0 Plane
    5.0 Relation between Plane, Line and Point.
    6.0 Intersection of a line and a plane
    7.0 Image of a point in a plane

3.3 Co-planarity of two lines
Let the vector equation of two lines be
$$\begin{equation} \begin{aligned} \overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow {{b_1}} \;...(1) \\ \overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow {{b_2}} \;...(2) \\\end{aligned} \end{equation} $$
where $\overrightarrow {{a_1}} $ is the position vector of point $A$ through which line $(1)$ passes and parallel to $\overrightarrow {{b_1}} $ and $\overrightarrow {{a_2}} $ is the position vector of point $B$ through which line $(2)$ passes and parallel to $\overrightarrow {{b_2}} $. Therefore, we can write $$\overrightarrow {AB} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} $$
The given two lines are coplanar means in the same plane if and only if $\overrightarrow {AB} $ is perpendicular to $\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} $ i.e., $$\begin{equation} \begin{aligned} \overrightarrow {AB} .\left( {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right) = 0 \\ \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\left( {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right) = 0 \\\end{aligned} \end{equation} $$
If the equation of two lines are given in cartesian form i.e., $$\begin{equation} \begin{aligned} \frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}} \\ \frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}} \\\end{aligned} \end{equation} $$
The given two lines are coplanar if and only if $\overrightarrow {AB} $ is perpendicular to $\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} $ where $$\begin{equation} \begin{aligned} \overrightarrow {AB} = \left( {{x_2} - {x_1}} \right)\widehat i + \left( {{y_2} - {y_1}} \right)\widehat j + \left( {{z_2} - {z_1}} \right)\widehat k \\ \overrightarrow {{b_1}} = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k \\ \overrightarrow {{b_2}} = {a_2}\widehat i + {b_2}\widehat j + {c_2}\widehat k \\\end{aligned} \end{equation} $$
Put all the values in the above equation, we get the condition for co-planarity of two lines as
\[\left| {\begin{array}{c} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\ {{a_1}}&{{b_1}}&{{c_1}} \\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = 0\]
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD