Physics > Superposition of Waves > 2.0 Interference of Waves

  Superposition of Waves
    1.0 Introduction
    2.0 Interference of Waves
    3.0 Standing or Stationary Wave
    4.0 Longitudinal stationary wave in an organ pipe
    5.0 Beats
    6.0 Questions

2.2 Interference of waves from coherent sources
Two sources are said to be coherent if they have,
  • a constant phase difference or are in phase
  • same frequency
  • same speed
  • same direction of propagation
  • same wavelength

Consider two coherent sources $S_1$ and $S_2$ which oscillate with angular frequency $\omega $. A point $P$ is situated at a distance $x$ and $\left( {x + \Delta x} \right)$ from source $S_1$ and $S_2$ respectively. So, the path difference between two waves reaching point $P$ from source $S_1$ and $S_2$ is $\Delta x$.

The wave equation at point $P$ due to the motion of two waves are described by, $$\begin{equation} \begin{aligned} {y_1} = {A_1}\sin \left( {kx - \omega t} \right) \\ {y_2} = {A_2}\sin \left[ {\left( {kx - \omega t} \right) + \phi } \right] \\\end{aligned} \end{equation} $$ Phase difference, $$\phi = \left( {\frac{{2\pi }}{\lambda }} \right)\Delta x$$
Resultant wave at point $P$ is given by, $$\begin{equation} \begin{aligned} y = {y_1} + {y_2} \\ y = {A_1}\sin \left( {kx - \omega t} \right) + {A_2}\sin \left[ {\left( {kx - \omega t} \right) + \phi } \right] \\ y = {A_1}\sin \left( {kx - \omega t} \right) + {A_2}\sin \left( {kx - \omega t} \right)\cos \phi + {A_2}\cos \left( {kx - \omega t} \right)\sin \phi \\ y = \left( {{A_1} + {A_2}\cos \phi } \right)\sin \left( {kx - \omega t} \right) + {A_2}\sin \phi \cos \left( {kx - \omega t} \right) \\ y = A\cos \theta \sin \left( {kx - \omega t} \right) + A\sin \theta \cos \left( {kx - \omega t} \right) \\ y = A\sin \left( {kx - \omega t + \theta } \right) \\\end{aligned} \end{equation} $$ where, $$\begin{equation} \begin{aligned} A\cos \theta = {A_1} + {A_2}\cos \phi \quad ...(i) \\ A\sin \theta = {A_2}\sin \theta \quad ...(ii) \\\end{aligned} \end{equation} $$ Dividing equation $(ii)$ by $(i)$ we get, $$\tan \theta = \left( {\frac{{{A_2}\sin \theta }}{{{A_1} + {A_2}\cos \phi }}} \right)$$ Squaring and adding equation $(i)$ & $(ii)$ we get, $${A^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}\cos \phi $$ As, $I \propto {A^2}$. So, $$I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \phi $$ Vector representation of waves and its resultant is shown below,


2.2.1 For constructive interference

Condition for constructive interference,

Phase difference, $\phi = 2n\pi $ where $n = 0,1,2....\;$

Relation between phase difference and path difference is, $$\begin{equation} \begin{aligned} \phi = \left( {\frac{{2\pi }}{\lambda }} \right)\Delta x \\ \Delta x = n\lambda \quad (As,\phi = 2n\pi ) \\\end{aligned} \end{equation} $$ So, the path difference for constructive interference is $\Delta x = n\lambda $.

At constructive interference, $$\begin{equation} \begin{aligned} A_{\max }^2 = A_1^2 + A_2^2 + 2{A_1}{A_2}\cos (2n\pi ) \\ A_{\max }^2 = A_1^2 + A_2^2 + 2{A_1}{A_2}\quad \left[ {\cos (2n\pi ) = 1} \right] \\ A_{\max }^2 = {\left( {{A_1} + {A_2}} \right)^2} \\ {A_{\max }} = \left( {{A_1} + {A_2}} \right) \\\end{aligned} \end{equation} $$ Similarly,$${I_{\max }} = {\left( {\sqrt {{I_1}} + \sqrt {{I_2}} } \right)^2}$$

2.2.2 For destructive interference

Condition for destructive interference,

Phase difference, $\phi = (2n+1)\pi $ where $n = 0,1,2....\;$

Relation between phase difference and path difference is, $$\begin{equation} \begin{aligned} \phi = \left( {\frac{{2\pi }}{\lambda }} \right)\Delta x \\ \Delta x = (2n + 1)\frac{\lambda }{2}\quad [As,\phi = (2n + 1)\pi ] \\\end{aligned} \end{equation} $$ So, the path difference for constructive interference is $\Delta x = (2n + 1)\frac{\lambda }{2}$

At destructive interference, $$\begin{equation} \begin{aligned} A_{\min }^2 = A_1^2 + A_2^2 + 2{A_1}{A_2}\cos [(2n+1)\pi ] \\ A_{\min }^2 = A_1^2 + A_2^2 - 2{A_1}{A_2}\quad \left[ {\cos [(2n+1)\pi ] = -1} \right] \\ A_{\min }^2 = {\left( {{A_1} - {A_2}} \right)^2} \\ {A_{\min }} = \left( {{A_1} - {A_2}} \right) \\\end{aligned} \end{equation} $$ Similarly,$${I_{\min }} = {\left( {\sqrt {{I_1}} - \sqrt {{I_2}} } \right)^2}$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD