Physics > Superposition of Waves > 2.0 Interference of Waves

  Superposition of Waves
    1.0 Introduction
    2.0 Interference of Waves
    3.0 Standing or Stationary Wave
    4.0 Longitudinal stationary wave in an organ pipe
    5.0 Beats
    6.0 Questions

2.6 Expression for the reflection and transmission of wave
Let us understand the reflection and transmission of wave mathematically.

The equation of an incident wave can be written as, $${y_i} = {A_i}\cos ({k_2}x - \omega t)$$ The equation of a reflected wave can be written as, $${y_r} = {A_r}\cos ({k_1}x + \omega t)$$ Similarly, the equation of transmitted wave is, $${y_t} = {A_t}\cos ({k_2}x - \omega t)$$
The wave must be continious. So, at the boundary (junction), the resultant wave in medium 1 should be equal to the resultant wave in medium 2.
Mathematically, $${y_i} + {y_r} = {y_t}$$ $$\begin{equation} \begin{aligned} {y_i} + {y_r} = {y_t} \\ {A_i}\cos \left( {{k_1}x - \omega t} \right) + {A_r}\cos \left( {{k_1}x + \omega t} \right) = {A_t}\cos \left( {{k_2}x - \omega t} \right) \\\end{aligned} \end{equation} $$ Applying boundary condition $(x=0)$, $$\begin{equation} \begin{aligned} {A_i}\cos \left( { - \omega t} \right) + {A_r}\cos \left( {\omega t} \right) = {A_t}\cos \left( { - \omega t} \right) \\ {A_i} + {A_r} = {A_t}\quad ...(i) \\\end{aligned} \end{equation} $$
Slope at the boundary must be equal, $$\begin{equation} \begin{aligned} \frac{{\partial {y_i}}}{{\partial x}} + \frac{{\partial {y_r}}}{{\partial x}} = \frac{{\partial {y_t}}}{{\partial x}} \\ - {A_i}{k_1}\sin \left( {{k_1}x - \omega t} \right) - {A_r}{k_1}\sin \left( {{k_1}x + \omega t} \right) = - {A_t}{k_2}\sin \left( {{k_2}x - \omega t} \right) \\\end{aligned} \end{equation} $$ Applying boundary condition $(x=0)$, $$\begin{equation} \begin{aligned} - {A_i}{k_1}\sin \left( { - \omega t} \right) - {A_r}{k_1}\sin \left( {\omega t} \right) = - {A_t}{k_2}\sin \left( { - \omega t} \right) \\ {A_i}{k_1} - {A_r}{k_1} = {A_t}{k_2}\quad ...(ii) \\\end{aligned} \end{equation} $$ From equation $(i)$ and $(ii)$ we get, $${A_r} = \left( {\frac{{{k_1} - {k_2}}}{{{k_1} + {k_2}}}} \right){A_i}\quad \& \quad {A_t} = \left( {\frac{{2{k_1}}}{{{k_1} + {k_2}}}} \right){A_i}\quad ...(iii)$$ As we know, $${k_1} = \frac{\omega }{{{v_1}}}\quad and\quad {k_2} = \frac{\omega }{{{v_2}}}$$ So, equation $(iii)$ can be written as, $${A_r} = \left( {\frac{{{v_2} - {v_2}}}{{{v_1} + {v_2}}}} \right){A_i}\quad \& \quad {A_t} = \left( {\frac{{2{v_2}}}{{{v_1} + {v_2}}}} \right){A_i}$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD