Physics > Superposition of Waves > 3.0 Standing or Stationary Wave

  Superposition of Waves
    1.0 Introduction
    2.0 Interference of Waves
    3.0 Standing or Stationary Wave
    4.0 Longitudinal stationary wave in an organ pipe
    5.0 Beats
    6.0 Questions

3.2 Vibrations in a stretched string
Consider a string of length $L$ fixed at both ends. When we set-up sinusoidal wave on such a string it gets reflected from fixed ends.
Due to the superposition of two identical waves travelling in opposite direction transverse standing waves are produced on the string.
Note: The fixed points should be nodes and has to be permanently at rest.
Speed of wave in a stretched string is given by, $$v = \sqrt {\frac{T}{\mu }} $$ where,
$T:$ Tension in the string
$\mu:$ Mass per unit length of the string
Normal modes of a string Diagram No. of loops Explanation Wavelength Frequency
First harmonic
or
First mode
or
Fundamental tone

$n=1$ $$\begin{equation} \begin{aligned}
\frac{\lambda }{2} = L \\
\lambda = 2L \\
\frac{v}{f} = 2L \\
f = \frac{v}{{2L}} = \frac{1}{{2L}}\sqrt {\frac{T}{\mu }} \\\end{aligned} \end{equation} $$
$$\lambda = 2L$$ $$\begin{equation} \begin{aligned}
f = \frac{v}{{2L}} \\
f = \frac{1}{{2L}}\sqrt {\frac{T}{\mu }} \\\end{aligned} \end{equation} $$
Second harmonic
or
Second mode
or
First overtone


$n=2$ $$\begin{equation} \begin{aligned}
\lambda = L \\
\frac{v}{f} = L \\
f = \frac{v}{L} = \frac{1}{L}\sqrt {\frac{T}{\mu }} \\\end{aligned} \end{equation} $$
$$\lambda = L$$ $$\begin{equation} \begin{aligned}
f = \frac{v}{L} \\
f = \frac{1}{L}\sqrt {\frac{T}{\mu }} \\\end{aligned} \end{equation} $$
Third harmonic
or
Third mode
or
Second overtone





$n=3$ $$\begin{equation} \begin{aligned}
\frac{{3\lambda }}{2} = L \\
\lambda = \frac{{2L}}{3} \\
\frac{v}{f} = \frac{{2L}}{3} \\
f = \frac{{3v}}{{2L}} = \frac{3}{{2L}}\sqrt {\frac{T}{\mu }} \\\end{aligned} \end{equation} $$
$$\lambda = \frac{{2L}}{3}$$ $$\begin{equation} \begin{aligned}
f = \frac{{3v}}{{2L}} \\
f = \frac{3}{{2L}}\sqrt {\frac{T}{\mu }} \\\end{aligned} \end{equation} $$
$n^{th}$ harmonic
or
$n^{th}$ mode
or
$(n-1)^{th}$ overtone





$n=n$ $$\begin{equation} \begin{aligned}
\frac{{n\lambda }}{2} = L \\
\lambda = \frac{{2L}}{n} \\
\frac{v}{f} = \frac{{2L}}{n} \\
f = \frac{{nv}}{{2L}} = \frac{n}{{2L}}\sqrt {\frac{T}{\mu }} \\\end{aligned} \end{equation} $$
$$\lambda = \frac{{2L}}{n}$$ $$\begin{equation} \begin{aligned}
f = \frac{{nv}}{{2L}} \\
f = \frac{n}{{2L}}\sqrt {\frac{T}{\mu }} \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD