Inverse Trigonometric Function
    1.0 Introduction
    2.0 Inverse Trigonometric function
    3.0 Properties

3.4 Property 4

(i) ${\sin ^{ - 1}}(\sin x) = $

\[\left\{ {\begin{array}{c} x&{0 \leqslant x \leqslant \frac{\pi }{2}} \\ {\pi - x}&{\frac{\pi }{2} \leqslant x \leqslant \pi } \\ {\pi - x}&{\pi \leqslant x \leqslant \frac{{3\pi }}{2}} \\ { - 2\pi + x}&{\frac{{3\pi }}{2} \leqslant x \leqslant 2\pi } \end{array}} \right.\]

Proof: We need to plot the graph of this function

$$y = {\sin ^{ - 1}}(\sin x)...(i)$$


Let us break the intervals to plot the graph i.e, $x \in \left[ {2n\pi - \frac{\pi }{2},2n\pi + \frac{\pi }{2}} \right]$

so $0 \leqslant x \leqslant \frac{\pi }{2},\frac{\pi }{2} \leqslant x \leqslant \pi ,.....$

As we know that after completing one rotation i.e $2\pi $, the graph will repeat. So we plot the graph for $ - 2\pi \leqslant x \leqslant 2\pi $

Take the interval $0 \leqslant x \leqslant \frac{\pi }{2}$

Put $\sin x = t$ where $(t \in [ - 1,1])$

$$x = {\sin ^{ - 1}}t...(ii)$$

From $(i)$, as we know that the range of ${\sin ^{ - 1}}$ is $\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$, $x$ should be in that range which is satisfied. From $(i)$ and $(ii)$, we have $$x = {\sin ^{ - 1}}t = y$$


Now, take the interval $\left[ {\frac{\pi }{2},\pi } \right]$,

Put $\sin x = t$ where $(t \in [ - 1,1])$

$$x = {\sin ^{ - 1}}t...(ii)$$

From $(ii)$, $x$ should be in the range of $\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$ which is not satisfied because we assume $\frac{\pi }{2} \leqslant x \leqslant \pi $.

To bring it in the range,

$$\begin{equation} \begin{aligned} \pi - \frac{\pi }{2} \geqslant \pi - x \geqslant \pi - \pi \\ \frac{\pi }{2} \geqslant \pi - x \geqslant 0 \\\end{aligned} \end{equation} $$

$\pi -x$ is in the range so we can replace $x$ by $\pi -x$ , we get

$$\begin{equation} \begin{aligned} \pi - x = {\sin ^{ - 1}}t \\ y = {\sin ^{ - 1}}(\sin x) = {\sin ^{ - 1}}t \\ y = \pi - x \\\end{aligned} \end{equation} $$


Now take the interval $\pi \leqslant x \leqslant \frac{{3\pi }}{2}$

Put $$\begin{equation} \begin{aligned} \sin x = t \\ t \in [ - 1,1] \\ x = {\sin ^{ - 1}}t...(ii) \\\end{aligned} \end{equation} $$

Since $\pi \leqslant x \leqslant \frac{{3\pi }}{2}$ is not in the range so to bring it in the range,

$$\begin{equation} \begin{aligned} \pi - \pi \geqslant \pi - x \geqslant \pi - \frac{{3\pi }}{2} \\ 0 \geqslant \pi - x \geqslant \frac{{ - \pi }}{2} \\\end{aligned} \end{equation} $$

$\pi -x$ is in the range so we can replace $x$ by $\pi -x$ , we get $\pi - x = {\sin ^{ - 1}}t$.

From $(i)$, we get $$\begin{equation} \begin{aligned} y = {\sin ^{ - 1}}(\sin x) = {\sin ^{ - 1}}(t) \\ y = \pi - x \\\end{aligned} \end{equation} $$

Take the interval $\frac{{3\pi }}{2} \leqslant x \leqslant 2\pi $

Put $$\begin{equation} \begin{aligned} \sin x = t \\ t \in [ - 1,1] \\ x = {\sin ^{ - 1}}t...(ii) \\\end{aligned} \end{equation} $$

Since it is not in the range so to bring it in the range,

$$\begin{equation} \begin{aligned} - 2\pi + \frac{{3\pi }}{2} \leqslant - 2\pi + x \leqslant - 2\pi + 2\pi \\ \frac{{ - \pi }}{2} \leqslant - 2\pi + x \leqslant 0 \\\end{aligned} \end{equation} $$

Since $ - 2\pi + x$ is in the range. Replace $x$ by $ - 2\pi + x$, we get $$ - 2\pi + x = {\sin ^{ - 1}}t$$ From $(i)$, $$\begin{equation} \begin{aligned} y = {\sin ^{ - 1}}(\sin x) = {\sin ^{ - 1}}(t) \\ y = - 2\pi + x \\\end{aligned} \end{equation} $$

Similarly we can prove for other intervals. Since ${\sin ^{ - 1}}(\sin x)$ is an odd function, it is symmetric about origin as shown in figure.


(ii) ${\cos ^{ - 1}}(\cos \,\,x) = $

\[\left\{ {\begin{array}{c} x&{0 \leqslant x \leqslant \frac{\pi }{2}} \\ x&{\frac{\pi }{2} \leqslant x \leqslant \pi } \\ {2\pi - x}&{\pi \leqslant x \leqslant \frac{{3\pi }}{2}} \\ {2\pi - x}&{\frac{{3\pi }}{2} \leqslant x \leqslant 2\pi } \end{array}} \right.\]

Proof: We need to plot the graph of this function

$$y = {\cos ^{ - 1}}(\cos x)...(i)$$

Let us break the intervals to plot the graph i.e, $x \in \left[ {2n\pi - \frac{\pi }{2},2n\pi + \frac{\pi }{2}} \right]$

so $0 \leqslant x \leqslant \frac{\pi }{2},\frac{\pi }{2} \leqslant x \leqslant \pi ,.....$

As we know that after completing one rotation i.e $2\pi $, the graph will repeat. So we plot the graph for $ - 2\pi \leqslant x \leqslant 2\pi $

Take the interval $0 \leqslant x \leqslant \frac{\pi }{2}$

Put $\cos x = t$ where $(t \in [ - 1,1])$

$$x = {\cos ^{ - 1}}t...(ii)$$

From $(i)$, as we know that the range of ${\cos ^{ - 1}}$ is $[0,\pi]$, $x$ should be in that range which is satisfied. From $(i)$ and $(ii)$, we have $$x = {\cos ^{ - 1}}t = y$$

Now, take the interval $\left[ {\frac{\pi }{2},\pi } \right]$,

Put $\cos x = t$ where $(t \in [ - 1,1])$

$$x = {\cos ^{ - 1}}t...(ii)$$

From $(ii)$, $x$ should be in the range of $[0,\pi]$ which is satisfied. From $(i)$ and $(ii)$, we have $$x = {\cos ^{ - 1}}t = y$$

Now take the interval $\pi \leqslant x \leqslant \frac{{3\pi }}{2}$

Put $$\begin{equation} \begin{aligned} \cos x = t \\ t \in [ - 1,1] \\ x = {\cos ^{ - 1}}t...(ii) \\\end{aligned} \end{equation} $$

Since $\pi \leqslant x \leqslant \frac{{3\pi }}{2}$ is not in the range so to bring it in the range,

$$\begin{equation} \begin{aligned} - \pi \geqslant - x \geqslant - \frac{{3\pi }}{2} \\ 2\pi - \pi \geqslant 2\pi - x \geqslant 2\pi - \frac{{3\pi }}{2} \\ \pi \geqslant 2\pi - x \geqslant \frac{\pi }{2} \\\end{aligned} \end{equation} $$

$2\pi -x$ is in the range so we can replace $x$ by $2\pi -x$ , we get $2\pi - x = {\cos ^{ - 1}}t$.

From $(i)$, we get $$\begin{equation} \begin{aligned} y = {\cos ^{ - 1}}(\cos x) = {\cos ^{ - 1}}(t) \\ y = 2\pi - x \\\end{aligned} \end{equation} $$

Take the interval $\frac{{3\pi }}{2} \leqslant x \leqslant 2\pi $

Put $$\begin{equation} \begin{aligned} \cos x = t \\ t \in [ - 1,1] \\ x = {\cos ^{ - 1}}t...(ii) \\\end{aligned} \end{equation} $$

Since $\frac{{3\pi }}{2} \leqslant x \leqslant 2\pi $ is not in the range so to bring it in the range,

$$\begin{equation} \begin{aligned} - \frac{{3\pi }}{2} \geqslant - x \geqslant - 2\pi \\ 2\pi - \frac{{3\pi }}{2} \geqslant 2\pi - x \geqslant 2\pi - 2\pi \\ \frac{\pi }{2} \geqslant 2\pi - x \geqslant 0 \\\end{aligned} \end{equation} $$

$2\pi -x$ is in the range so we can replace $x$ by $2\pi -x$ , we get $2\pi - x = {\cos ^{ - 1}}t$.

From $(i)$, we get $$\begin{equation} \begin{aligned} y = {\cos ^{ - 1}}(\cos x) = {\cos ^{ - 1}}(t) \\ y = 2\pi - x \\\end{aligned} \end{equation} $$

Similarly we can prove for other intervals. Since ${\cos ^{ - 1}}(\cos x)$ is an even function, it is symmetric about $y$ axis as shown in figure.


(iii) ${\tan ^{ - 1}}(\tan x)=$

\[\left\{ {\begin{array}{c} x&{0 \leqslant x \leqslant \frac{\pi }{2}} \\ {x - \pi }&{\frac{\pi }{2} \leqslant x \leqslant \pi } \\ {x - \pi }&{\pi \leqslant x \leqslant \frac{{3\pi }}{2}} \\ {x - 2\pi }&{\frac{{3\pi }}{2} \leqslant x \leqslant 2\pi } \end{array}} \right.\]

Proof: Since ${\tan ^{ - 1}}(\tan x)$ is an odd function, it is symmetric about origin as shown in figure.




(iv) ${\text{cose}}{{\text{c}}^{ - 1}}({\text{cosec}}\;x)$. The graph of this function is similar to ${\sin ^{ - 1}}(\sin x)$


(v) $se{c^{ - 1}}(secx)$. The graph of this function is similar to ${\cos ^{ - 1}}(\cos x)$


(vi) ${\cot ^{ - 1}}(\cot x)$. The graph of this function is not similar to ${\tan ^{ - 1}}(\tan x)$. It consists only the positive part of ${\tan ^{ - 1}}(\tan x)$ as shown in figure.


Note: All the functions discussed above are periodic functions.

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD