Inverse Trigonometric Function
    1.0 Introduction
    2.0 Inverse Trigonometric function
    3.0 Properties

3.13 Property 13
$(i) {\tan ^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z = {\tan ^{ - 1}}\left( {\frac{{x + y + z - xyz}}{{1 - xy - yz - zx}}} \right)$

$(ii)$ If ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z = \frac{\pi }{2}$ then $xy + yz + zx = 1$

$(iii)$ If ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z = \pi $ then $x + y + z = xyz$

$(iv)$ If ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2}$ then ${x^2} + {y^2} + {z^2} + 2xyz = 1$

$(v)$ If ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \pi $ then $x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz$

$(vi)$ If ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y + {\cos ^{ - 1}}z = 3\pi $, then $xy + yz + zx = 3$

$(vii)$ If ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y + {\cos ^{ - 1}}z = \pi $ then ${x^2} + {y^2} + {z^2} + 2xyz = 1$

$(vii)$ If ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$ then $xy + yz + zx = 3$

$(viii)$ If ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \theta $ then ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - \theta $

$(ix)$ If ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \theta $ then ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \pi - \theta $

$(x)$ If ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \frac{\pi }{2}$ then $xy=1$

$(xi)$ If ${\cot ^{ - 1}}x + {\cot ^{ - 1}}y = \frac{\pi }{2}$ then $xy=1$

$(xii)$ If ${\cos ^{ - 1}}\frac{x}{a} + {\cos ^{ - 1}}\frac{y}{b} = \theta $ then ${\left( {\frac{x}{a}} \right)^2} - \frac{{2xy}}{{ab}}\cos\theta + {\left( {\frac{y}{b}} \right)^2} = {\sin ^2}\theta $

$(xiii)$ ${\tan ^{ - 1}}{x_1} + {\tan ^{ - 1}}{x_2} + {\tan ^{ - 1}}{x_3}... + {\tan ^{ - 1}}{x_n} = {\tan ^{ - 1}}\left( {\frac{{{S_1} - {S_3} + {S_{5 - ..}}}}{{1 - {S_2} + {S_4} - {S_6} + ...}}} \right)$

where ${{S_k}}$ denotes the sum of products of ${{x_1}}$, ${{x_2}}$, ${{x_3}}$ taken $k$ at a time.

Question 4. Solve: $\cos \left[ {{{\sin }^{ - 1}}\frac{3}{5} + {{\sin }^{ - 1}}\frac{5}{{13}}} \right]$

Solution: Let $$\begin{equation} \begin{aligned} {\sin ^{ - 1}}\frac{3}{5} = \theta \\ \sin \theta = \frac{3}{5} \\\end{aligned} \end{equation} $$
Let $$\begin{equation} \begin{aligned} {\sin ^{ - 1}}\frac{5}{{13}} = \phi \\ \sin \phi = \frac{5}{{13}} \\\end{aligned} \end{equation} $$
The given expression becomes $\cos [\theta + \phi ]$ so using $$\cos [\theta + \phi ] = \cos \theta \cos \phi - \sin \theta \sin \phi $$
$$\begin{equation} \begin{aligned} \frac{4}{5} \times \frac{{12}}{{13}} - \frac{3}{5} \times \frac{5}{{13}} \\ \frac{{48}}{{65}} - \frac{{15}}{{65}} \\ \frac{{33}}{{65}} \\\end{aligned} \end{equation} $$

Question 5. Prove that ${{{\tan }^{ - 1}}\frac{1}{7} + {{\tan }^{ - 1}}\frac{1}{{13}} = {{\tan }^{ - 1}}\frac{2}{9}}$

Solution: Applying the formula, ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x + y}}{{1 - xy}}} \right)$
$${\tan ^{ - 1}}\frac{1}{7} + {\tan ^{ - 1}}\frac{1}{{13}} = {\tan ^{ - 1}}\left( {\frac{{\frac{1}{7} + \frac{1}{{13}}}}{{1 - \frac{1}{7} \times \frac{1}{{13}}}}} \right) = {\tan ^{ - 1}}\left( {\frac{{20}}{{90}}} \right) = {\tan ^{ - 1}}\frac{2}{9}$$

Question 6.Prove that: ${\tan ^{ - 1}}\sqrt x = \frac{1}{2}{\cos ^{ - 1}}\left( {\frac{{1 - x}}{{1 + x}}} \right)$

Solution: Let $\sqrt x = \tan \theta $
then $$LHS = \theta $$
RHS: $$\frac{1}{2}{\cos ^{ - 1}}\left( {\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)$$
We know that $\cos 2\theta = \left( {\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)$
$$\frac{1}{2}{\cos ^{ - 1}}(\cos 2\theta )$$
Using Property ${\cos ^{ - 1}}(\cos x) = x$, we have
$$\frac{1}{2} \times 2\theta $$
$$ = \theta $$

Question 7. Solve: $${\tan ^{ - 1}}\left( {\frac{{1 - x}}{{1 + x}}} \right) = \frac{1}{2}{\tan ^{ - 1}}x,x > 0$$
Solution: $$\begin{equation} \begin{aligned} x = \tan \theta \\ {\tan ^{ - 1}}\left( {\frac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right) = \frac{1}{2}{\tan ^{ - 1}}\left( {\tan \theta } \right) \\\end{aligned} \end{equation} $$
We know that $\tan \frac{\pi }{4} = 1$, so putting this in place of $1$ we get $${\tan ^{ - 1}}\left( {\frac{{\tan \frac{\pi }{4} - \tan \theta }}{{1 + \tan \frac{\pi }{4}\tan \theta }}} \right) = \frac{1}{2}{\tan ^{ - 1}}\left( {\tan \theta } \right)$$
Using property ${\tan ^{ - 1}}\left( {\tan x} \right) = x$
$$\begin{equation} \begin{aligned} {\tan ^{ - 1}}\left( {\frac{{\tan \frac{\pi }{4} - \tan \theta }}{{1 + \tan \frac{\pi }{4}\tan \theta }}} \right) = \frac{1}{2}{\tan ^{ - 1}}\left( {\tan \theta } \right) \\ {\tan ^{ - 1}}\left[ {\tan \left\{ {\frac{\pi }{4} - \theta } \right\}} \right] = \frac{1}{2}\theta \\ \frac{\pi }{4} - \theta = \frac{1}{2}\theta \\ \frac{3}{2}\theta = \frac{\pi }{4} \\ \theta = \frac{\pi }{6} \\ x = \tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }} \\\end{aligned} \end{equation} $$

Question 8. Show that $${\tan ^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right) = \frac{\pi }{4} + \frac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right)$$
Solution: Let $$\begin{equation} \begin{aligned} {x^2} = \cos 2\theta \\ 2\theta = {\cos ^{ - 1}}{x^2} \\ \theta = \frac{1}{2}{\cos ^{ - 1}}{x^2} \\\end{aligned} \end{equation} $$
Put ${x^2} = \cos 2\theta $ in LHS of equation, we have
$$\begin{equation} \begin{aligned} {\tan ^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right) \\ {\tan ^{ - 1}}\left( {\frac{{\sqrt {1 + \cos 2\theta } + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta } - \sqrt {1 - \cos 2\theta } }}} \right) \\ {\tan ^{ - 1}}\left( {\frac{{\sqrt {2{{\cos }^2}\theta } + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta } - \sqrt {2{{\sin }^2}\theta } }}} \right) \\ {\tan ^{ - 1}}\left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) \\\end{aligned} \end{equation} $$
Dividing numerator and denominator by ${\cos \theta }$,we get $$\begin{equation} \begin{aligned} {\tan ^{ - 1}}\left( {\frac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right) \\ {\tan ^{ - 1}}\left[ {\tan \left( {\frac{\pi }{4} + \theta } \right)} \right] \\ \left( {\frac{\pi }{4} + \theta } \right) \\ = \frac{\pi }{4} + \frac{1}{2}{\cos ^{ - 1}}\left( {{x^2}} \right) \\\end{aligned} \end{equation} $$

Question 9. If $x$, $y$ and $z$ are in A.P and ${\tan ^{ - 1}}x$, ${\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in AP, then show that $x=y=z$

Solution: Since $x$, $y$ and $z$ are in A.P so $2y=x+z$
Also ${\tan ^{ - 1}}x$, ${\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are in AP, so
$$\begin{equation} \begin{aligned} 2{\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}z \\ {\tan ^{ - 1}}\left( {\frac{{2y}}{{1 - {y^2}}}} \right) = {\tan ^{ - 1}}\left( {\frac{{x + z}}{{1 - xz}}} \right) \\ \frac{{2y}}{{1 - {y^2}}} = \frac{{x + z}}{{1 - xz}} \\ (x + z)(1 - {y^2}) = (1 - xz)(2y) \\\end{aligned} \end{equation} $$
Put $2y=x+z$, we get
$$\begin{equation} \begin{aligned} (1 - {y^2}) = 1 - xz \\ {y^2} = xz \\\end{aligned} \end{equation} $$
So $x$, $y$ and $z$ are in A.P as well as in GP so $x=y=z$

Question 10. Find the value of $\cot \left\{ {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} } \right\}$

Solution: $$\begin{equation} \begin{aligned} \cot \left\{ {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} } \right\} \\ \cot \left\{ {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2 + 4 + 6 + ... + n} \right)} } \right\} \\\end{aligned} \end{equation} $$
$$\cot \left\{ {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}(1 + n(n + 1))} } \right\}$$
$$\cot \left\{ {\sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\frac{1}{{1 + n(n + 1)}}} } \right\}$$
$$\cot \left\{ {\sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\frac{{(n + 1) - n}}{{1 + n(n + 1)}}} } \right\}$$
$$\cot \left\{ {\sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}(n + 1) - {{\tan }^{ - 1}}n} } \right\}$$
$$\begin{equation} \begin{aligned} \cot \left\{ {({{\tan }^{ - 1}}2 - {{\tan }^{ - 1}}1) + ({{\tan }^{ - 1}}3 - {{\tan }^{ - 1}}2) + ({{\tan }^{ - 1}}4 - {{\tan }^{ - 1}}3)...} \right\} \\ \cot \left\{ {{{\tan }^{ - 1}}24 - {{\tan }^{ - 1}}1} \right\} \\ \cot \left\{ {{{\tan }^{ - 1}}\frac{{24 - 1}}{{1 + 24}}} \right\} \\ \cot \left\{ {{{\tan }^{ - 1}}\frac{{23}}{{25}}} \right\} \\ \cot \left\{ {{{\cot }^{ - 1}}\frac{{25}}{{23}}} \right\} \\ \frac{{25}}{{23}} \\\end{aligned} \end{equation} $$

Question 11. The value of $x$ for which $$\sin \left[ {{{\cot }^{ - 1}}(1 + x)} \right] = \cos ({\tan ^{ - 1}}x)$$ is

Solution: We know that $$\begin{equation} \begin{aligned} {\cot ^{ - 1}}x = {\sin ^{ - 1}}\left( {\frac{1}{{\sqrt {1 + {x^2}} }}} \right) \\ {\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\frac{1}{{\sqrt {1 + {x^2}} }}} \right) \\\end{aligned} \end{equation} $$
So $$\begin{equation} \begin{aligned} \sin \left[ {{{\sin }^{ - 1}}\left( {\frac{1}{{\sqrt {1 + {{(1 + x)}^2}} }}} \right)} \right] = \cos \left[ {{{\cos }^{ - 1}}\left( {\frac{1}{{\sqrt {1 + {x^2}} }}} \right)} \right] \\ \frac{1}{{\sqrt {1 + {{(1 + x)}^2}} }} = \frac{1}{{\sqrt {1 + {x^2}} }} \\ 1 + {(1 + x)^2} = 1 + {x^2} \\ 1 + 1 + {x^2} + 2x = 1 + {x^2} \\ 1 + 2x = 0 \\ x = - \frac{1}{2} \\\end{aligned} \end{equation} $$

Question 12. Let $f:[0,4\pi ] \to [0,\pi ]$ be defined by $f(x) = {\cos ^{ - 1}}(\cos x)$. The number of points $x \in [0,4\pi ]$ satisfying the equation $f(x) = \frac{{10 - x}}{{10}}$ is

Solution: \[{\cos ^{ - 1}}(\cos x) = \left\{ \begin{gathered} x;x \in [0,\pi ] \hspace{1em} \\ 2\pi + x;x \in [\pi ,2\pi ] \hspace{1em} \\ - 2\pi + x;x \in [2\pi ,3\pi ] \hspace{1em} \\ 4\pi - x;x \in [3\pi ,4\pi ] \hspace{1em} \\ \end{gathered} \right\}\]
And $$\begin{equation} \begin{aligned} f(x) = \frac{{10 - x}}{{10}} \\ y = \frac{{10 - x}}{{10}} \\\end{aligned} \end{equation} $$$$y = 1 - \frac{x}{{10}}$$ The equation of line will pass through $(0,1)$ and $(10,0)$.

To find the number of solutions of equations involving trigonometric functions and algebraic functions we plot the graph and check the number of points of intersection as shown in figure.



As both graphs intersect at three points so a number of solution are $3$.
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD