Maths > Probability > 12.0 Probability Distribution

  Probability
    1.0 Basic Definitions
    2.0 Basic Notations
    3.0 Probability
    4.0 Intersection and Union of Sets of Events
    5.0 Conditional Probability
    6.0 Multiplication Theorem
    7.0 Independent Events
    8.0 Total Probability Theorem
    9.0 Bayes' Theorem
    10.0 Illustration for understanding the difference between total probability theorem and baye's theorem
    11.0 Probability Distribution of Random Variables
    12.0 Probability Distribution
    13.0 Mean and variance of a discrete random variable
    14.0 Binomial Distribution for Successive Events
    15.0 Mean and variance of binomial distribution

12.1 Basic Equations
If $X$ is a random with probability distribution


$X$:${x_1}$${x_2}$${x_3}$......${x_n}$
$P(X)$:${p_1}$${p_2}$${p_3}$......${p_n}$
Then,
$$\begin{equation} \begin{aligned} i.\;\;P(X \le {x_i}) = P(X = {x_1}) + P(X = {x_2}) + ... + P(X = {x_i}) = {p_1} + {p_2} + .... + {p_i} \\ ii.\;\;P(X < {x_i}) = P(X = {x_1}) + P(X = {x_2}) + ... + P(X = {x_{i - 1}}) = {p_1} + {p_2} + .... + {p_{i - 1}} \\ iii.\;\;P(X \ge {x_i}) = P(X = {x_i}) + P(X = {x_{i + 1}}) + ... + P(X = {x_n}) = {p_i} + {p_{i + 1}} + .... + {p_n} \\ iv.\;\;P(X > {x_i}) = P(X = {x_{i + 1}}) + P(X = {x_{i + 2}}) + ... + P(X = {x_n}) = {p_{i + 1}} + {p_{i + 2}} + .... + {p_n} \\ v.\;\;P(X \le {x_i}) = 1 - P(X > {x_i}) \\ vi.\;\;P(X < {x_i}) = 1 - P(X \ge {x_i}) \\ vii.\;\;P(X \ge {x_i}) = 1 - P(X < {x_i}) \\ viii.\;\;P(X > {x_i}) = 1 - P(X \le {x_i}) \\\end{aligned} \end{equation} $$


Illustration 41. Determine which of the following can be probability distributions of a random variable $X$:

i.
$X$:$0$$1$$2$
$P(X)$:$0.4$$0.4$$0.2$

ii.
$X$:$0$$1$$2$
$P(X)$:$0.6$$0.1$$0.2$

Solution:

i. Clearly,
$$\begin{equation} \begin{aligned} P(X = 0) + P(X = 1) + P(X = 2) \\ = 0.4 + 0.4 + 0.2 \\ = 1 \\\end{aligned} \end{equation} $$
Hence the given distribution of probabilities is a probability distribution of random variable $X$.

ii. Here,
$$\begin{equation} \begin{aligned} P(X = 0) + P(X = 1) + P(X = 2) \\ = 0.6 + 0.1 + 0.2 \\ = 0.9 \\\end{aligned} \end{equation} $$
Thus,
$$P(X = 0) + P(X = 1) + P(X = 2) \ne 1$$
Hence the given distribution of probabilities is not a probability distribution.


Illustration 42. The random variable $X$ has a probability distribution $P(X)$ of the following form, where $k$ is some number: $$P(X = x)\left\{ \matrix{k,\;\;if\;x = 0 \hspace{1em} \cr 2k,\;\;if\;x = 1 \hspace{1em} \cr 3k,\;\;if\;x = 2 \hspace{1em} \cr 0,\;\;otherwise \hspace{1em} \cr} \right.$$

i. Determine the value of $k$
ii. Find $P(X < 2),P(X \le 2),P(X \ge 2)$

Solution: Let us chart the random variable and the corresponding probability distribution.

$X$$0$$1$$2$
$P(X)$$k$$2k$$3k$

i. As per the necessary conditions, $\sum\limits_{i = 1}^n {{p_i}} = 1$,
$$\begin{equation} \begin{aligned} P(X = 0) + P(X = 1) + P(X = 2) = 1 \\ \Rightarrow k + 2k + 3k = 1 \\ \Rightarrow 6k = 1 \\ \Rightarrow k = {1 \over 6} \\\end{aligned} \end{equation} $$

ii. $$\begin{equation} \begin{aligned} P(X < 2) \\ P(X < 2) = P(X = 0) + P(X = 1) \\ = k + 2k = 3k = 3\left( {{1 \over 6}} \right) = {1 \over 2} \\ P(X \le 2) \\ P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) \\ = k + 2k + 3k = 6\left( {{1 \over 6}} \right) = 1 \\ P(X \ge 2) \\ P(X \ge 2) = P(X = 2) + P(X = 3) + P(X = 4) + .... \\ = 1 - P(X < 2) = 1 - {1 \over 2} = {1 \over 2} \\\end{aligned} \end{equation} $$


Illustration 43. Four bad oranges are accidentally mixed with $16$ good oranges. Find the probability distribution of the number of bad oranges in a draw of two oranges.

Solution: Let $X$ denote the number of bad oranges in a draw of $2$ oranges drawn from group of $16$ good oranges and $4$ bad oranges.

The possibilities are,

i. none of them is bad.
i.e. $X=0$

ii. one of them is bad.
i.e. $X=1$

iii. both of them are bad.
i.e. $X=2$

Therefore $X$ can take the values $0$, $1$ and $2$.
Now,
$$\begin{equation} \begin{aligned} P(X = 0) = probability\;of\;getting\;no\;bad\;orange \\ = probability\;of\;getting\;two\;good\;oranges \\ P(X = 0) = {{^{16}{C_2}} \over {^{20}{C_2}}} = {{12} \over {19}} \\\end{aligned} \end{equation} $$

$$\begin{equation} \begin{aligned} P(X = 1) = probability\;of\;getting\;one\;bad\;orange \\ P(X = 1) = {{^{16}{C_1} \times {\;^4}{C_1}} \over {^{20}{C_2}}} = {{32} \over {95}} \\\end{aligned} \end{equation} $$

$$\begin{equation} \begin{aligned} P(X = 2) = probability\;of\;getting\;two\;bad\;oranges \\ P(X = 2) = {{^4{C_2}} \over {^{20}{C_2}}} = {3 \over {95}} \\\end{aligned} \end{equation} $$

Thus the probability distribution of $X$ is given by,

$X$$0$$1$$2$
$P(X)$${{12} \over {19}}$${{32} \over {95}}$${3 \over {95}}$



Illustration 44. Find the probability distribution of the number of green balls drawn when $3$ balls are drawn, one by one, without replacement from a bag containing $3$ green and $5$ white balls.

Solution: Let $X$ denote the total number of green balls drawn in three draws without replacement.
Let ${G_i}$ be the event of getting a green ball in the ${i^{th}}$ draw.
The possibilities are

i. None are green
i.e. $X=0$

ii. One is green
i.e. $X=1$

iii. Two are green
i.e. $X=2$

iv. All the three are green
i.e. $X=3$

$X=0$

$$\begin{equation} \begin{aligned} P(X = 0) = probability\;of\;getting\;no\;green\;ball\;in\;three\;draws \\ = P({{\bar G}_1} \cap {{\bar G}_2} \cap {{\bar G}_3})\; \\ i.e.\;getting\;white\;ball\;in\;all\;three\;draws \\ = P({{\bar G}_1})\;P({{\bar G}_2}/{{\bar G}_1})\;P({{\bar G}_3}/{{\bar G}_2} \cap {{\bar G}_1}) \\ \;Since,\;the\;drawing\;of\;the\;balls\;obeys\;conditional\;probability. \\ = {5 \over 8} \times {4 \over 7} \times {3 \over 6} = {5 \over {28}} \\\end{aligned} \end{equation} $$

$X=1$

$$\begin{equation} \begin{aligned} P(X = 1) = probability\;of\;getting\;one\;green\;ball\;in\;three\;draws \\ = P(({G_1} \cap {{\bar G}_2} \cap {{\bar G}_3}) \cup ({{\bar G}_1} \cap {G_2} \cap {{\bar G}_3}) \cup ({{\bar G}_1} \cap {{\bar G}_2} \cap {G_3})) \\ = P({G_1} \cap {{\bar G}_2} \cap {{\bar G}_3}) + P({{\bar G}_1} \cap {G_2} \cap {{\bar G}_3}) + P({{\bar G}_1} \cap {{\bar G}_2} \cap {G_3}) \\ = P({G_1})P({{\bar G}_2}/{G_1})P({{\bar G}_3}/{G_1} \cap {{\bar G}_2}) + P({{\bar G}_1})P({G_2}/{{\bar G}_1})P({{\bar G}_3}/{G_2} \cap {{\bar G}_1}) + P({{\bar G}_1})P({{\bar G}_2}/{{\bar G}_1})P({G_3}/{{\bar G}_1} \cap {{\bar G}_2}) \\ = {3 \over 8} \times {5 \over 7} \times {4 \over 6} + {5 \over 8} \times {3 \over 7} \times {4 \over 6} + {5 \over 8} \times {4 \over 7} \times {3 \over 6} = {{15} \over {28}} \\\end{aligned} \end{equation} $$

$X=2$

$$\begin{equation} \begin{aligned} P(X = 2) = probability\;of\;getting\;two\;green\;balls\;in\;three\;draws \\ = P\left( {({G_1} \cap {G_2} \cap {{\bar G}_3}) \cup ({{\bar G}_1} \cap {G_2} \cap {G_3}) \cup ({G_1} \cap {{\bar G}_2} \cap {G_3})} \right) \\ = P({G_1} \cap {G_2} \cap {{\bar G}_3}) + P({{\bar G}_1} \cap {G_2} \cap {G_3}) + P({G_1} \cap {{\bar G}_2} \cap {G_3}) \\ = P({G_1})P({G_2}/{G_1})P({{\bar G}_3}/{G_1} \cap {G_2}) + P({{\bar G}_1})P({G_2}/{{\bar G}_1})P({G_3}/{G_2} \cap {{\bar G}_1}) + P({G_1})P({{\bar G}_2}/{G_1})P({G_3}/{G_1} \cap {{\bar G}_2}) \\ = {3 \over 8} \times {2 \over 7} \times {5 \over 6} + {5 \over 8} \times {3 \over 7} \times {2 \over 6} + {3 \over 8} \times {5 \over 7} \times {2 \over 6} = {{15} \over {56}} \\\end{aligned} \end{equation} $$

$X=3$

$$\begin{equation} \begin{aligned} P(X = 3) = probability\;of\;getting\;three\;green\;balls\;in\;three\;draws \\ = P({G_1} \cap {G_2} \cap {G_3}) \\ = P({G_1})P({G_2}/{G_1})P({G_3}/{G_1} \cap {G_2}) \\ = {3 \over 8} \times {2 \over 7} \times {1 \over 6} = {1 \over {56}} \\\end{aligned} \end{equation} $$


Thus, the probability distribution of the number of green balls is given by,

$X:$$0$$1$$2$$3$
$P(X):$${5 \over {28}}$${{15} \over {28}}$${{15} \over {56}}$${1 \over {56}}$



Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD