Physics > Gravitation > 4.0 Gravitational potential

  Gravitation
    1.0 Newton's law of gravitation
    2.0 Variation of acceleration due to gravity
    3.0 Gravitational field
    4.0 Gravitational potential
    5.0 Gravitational potential energy
    6.0 Satellites
    7.0 Kepler's law of planetary motion
    8.0 Problem solving technique

4.2 Gravitational potential due to a uniform solid sphere
The gravitational potential due to a solid sphere of radius $R$ and mass $M$ at a distant $r$ from the centre of the sphere is given as follows,

  • At a point outside the sphere, i.e. $r>R$ $$V = - \frac{{GM}}{r}$$
  • At a point on the surface of the sphere, i.e. $r=R$ $$V = - \frac{{GM}}{R}$$
  • At a point inside the sphere ,i.e. $r<R$ $$V = - \frac{{GM\left( {3{R^2} - {r^2}} \right)}}{{2{R^3}}}$$

Proof: At a point outside the sphere


The solid sphere behaves like a point mass for a point outside the sphere.

So, for the gravitational potential outside the sphere is, $$V = - \frac{{GM}}{r}$$
Similarly, gravitational potential on the surface of the sphere, i.e. $(r=R)$ is, $$V = - \frac{{GM}}{R}$$


Proof: At a point inside the sphere


Consider a sphere of mass $M$ and radius $R$.

Density of sphere is, $$\rho = \frac{M}{V} = \frac{M}{{\left( {\frac{4}{3}\pi {R^3}} \right)}}$$$$\rho = \frac{{3M}}{{4\pi {R^3}}}$$

Mass of sphere of radius $r$ is,
$$M' = \rho V'$$$$M' = \frac{{3M}}{{4\pi {R^3}}} \times \frac{4}{3}\pi {r^3}$$$$M' = M{\left( {\frac{r}{R}} \right)^3} \quad ...(i)$$
Gravitational force at point $P$ is given by, $$F = \frac{{GM'm}}{{{r^2}}} \quad ...(ii)$$
From equation $(i)$ and $(ii)$ we get, $$F = \frac{{GM{r^2}m}}{{{r^2}{R^3}}}$$$$F = \frac{{GMm}}{{{R^3}}}r$$
Work done for displacement $dr$ is, $$dW = - \frac{{GMm}}{{{R^3}}}rdr$$
As we know, $$dV = - \frac{{dW}}{m}$$ So, $$dV = \frac{{GM}}{{{R^3}}}rdr$$
Integrating with proper limits we get,
$$\int\limits_{{V_R}}^{{V_r}} {dV} = \int\limits_R^r {\frac{{GM}}{{{R^3}}}rdr} $$$$\left[ V \right]_{{V_R}}^{{V_r}} = \frac{{GM}}{{{R^3}}}\left[ {\frac{{{r^2}}}{2}} \right]_R^r$$$${V_r} - {V_R} = \frac{{GM}}{{2{R^3}}}\left( {{r^2} - {R^2}} \right)$$$${V_r} - \left( { - \frac{{GM}}{R}} \right) = \frac{{GM}}{{2{R^3}}}\left( {{r^2} - {R^2}} \right)$$$${V_r} = \frac{{GM}}{{2{R^3}}}\left( {{r^2} - 3{R^2}} \right)$$ or $${V_r} = - \frac{{GM}}{{2{R^3}}}\left( {3{R^2} - {r^2}} \right)$$


Note: The gravitational potential due to a uniform solid sphere varies as,
$$V = - \frac{{GM}}{r}\quad {\text{for}}\quad r \geqslant R$$ $$V = - \frac{{GM\left( {3{R^2} - {r^2}} \right)}}{{2{R^3}}}\quad {\text{for}}\quad r \leqslant R$$
The $V$ vs $r$ graph can be drawn using the above equation is,


Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD