Physics > Motion in Two Dimension > 3.0 Ground to ground projectile motion

  Motion in Two Dimension
    1.0 Introduction
    2.0 Projectile motion
    3.0 Ground to ground projectile motion
    4.0 Projectile thrown parallel to the horizontal
    5.0 Projectile on an inclined plane
    6.0 Relative motion between two projectiles

3.6 Solved Examples

Question: A particle is projected with a velocity of $20\ m/s$ at an angle of $30^\circ $ with the horizontal. Find the following,

(a). Maximum height
(b). Time of flight
(c). Range

(Take $g=10\ m/s^2$)

Solution:



Writing all the kinematic variable as,

Horizontal motionVertical motion
${u_x} = u\cos \theta $${u_y} = u\sin \theta $
${a_x} = 0$${a_y} = - g$


Maximum height

Velocity at maximum height becomes zero.

${\overrightarrow u _y} = u\sin \theta = 10$
${\overrightarrow a _y} = - g = - 10$
${\overrightarrow v _y} = 0$
${\overrightarrow s _y} = ?$

So, $$v_y^2 = u_y^2 + 2{\overrightarrow a _y}{\overrightarrow s _y}$$$$0 = {10^2} + 2\left( { - 10} \right)({H_{\max }})$$$${H_{\max }} = \frac{{100}}{{20}}$$$${H_{\max }} = 5m$$

Time of flight

When the particle returns back to the ground, the displacement in vertical direction is zero.

${\overrightarrow u _y} = u\sin \theta = 10$
${\overrightarrow a _y} = - g = - 10$
${\overrightarrow s _y} = 0$
$t=T=?$

So, kinematic equation relating displacement and time is,
$${\overrightarrow s _y} = {\overrightarrow u _y}t + \frac{1}{2}{\overrightarrow a _y}{t^2}$$$$0 = \left( {10} \right)T + \frac{1}{2}\left( { - 10} \right){T^2}$$$$T = \frac{{2 \times 10}}{{10}}$$$$T = 2s$$

Range


Horizontal distance travelled during the time of flight is range.

$${\overrightarrow s _x} = {\overrightarrow u _x}t + \frac{1}{2}{\overrightarrow a _x}{t^2}$$$$R = \left( {10\sqrt 3 } \right)2 + 0$$$$R = 20\sqrt 3 m$$


Question: A particle is projected with a velocity of $10\ m/s$ at an angle of $30^\circ $ to the horizontal. Find its distance from the point of projection $\left( {\frac{1}{2}} \right)$ seconds later. $\left( {g = 10\,m/{s^2}} \right)$

Solution:


Horizontal motionVertical motion
${u_x} = u\cos \theta $
${u_y} = u\sin \theta$
${a_x} = 0$${a_y} = - g=-10$
We can write,
$${\overrightarrow s _x} = {\overrightarrow u _x}t + \frac{1}{2}{\overrightarrow a _x}{t^2}$$$$x = \left( {u\cos \theta } \right)t + 0$$$$x = 10 \times \frac{{\sqrt 3 }}{2} \times \frac{1}{2}$$$$x = \frac{{5\sqrt 3 }}{2}m$$
$${\overrightarrow s _y} = {\overrightarrow u _y}t + \frac{1}{2}{\overrightarrow a _y}{t^2}$$$$y = \left( {u\sin \theta } \right)t + \frac{1}{2}( - g){t^2}$$$$x = \left( {10 \times \frac{1}{2} \times \frac{1}{2}} \right) - \left( {\frac{1}{2} \times 10 \times \frac{1}{4}} \right)$$$$x = \frac{{10}}{4} - \frac{5}{4}$$


Distance from the point of projection is,

$$D = \sqrt {{{\left( {\frac{{5\sqrt 3 }}{2} - 0} \right)}^2} + {{\left( {\frac{5}{4} - 0} \right)}^2}} $$$$D = \sqrt {\frac{{75}}{4} + \frac{{25}}{{16}}} $$$$D = \sqrt {\frac{{300 + 25}}{{16}}} $$$$D = \sqrt {\frac{{325}}{{16}}} $$$$D = \frac{{5\sqrt {13} }}{4}m$$

Question: A body of mass $m$ is thrown upwards with velocity $u$ at angle $\theta$ with the horizontal. Find the velocity of the projectile after $t$ seconds.

Solution:


Horizontal motionVertical motion
${u_x} = u\cos \theta $
${u_y} = u\sin \theta$
${a_x} = 0$${a_y} = - g=-10$
Velocity in $x$ direction after $t$ seconds,
$${\overrightarrow v _x} = {\overrightarrow u _x} + {\overrightarrow a _x}t$$$${\overrightarrow v _x} = u\cos \theta + 0$$$${\overrightarrow v _x} = u\cos \theta $$
Velocity in $y$ direction after $t$ seconds,
$${\overrightarrow v _y} = {\overrightarrow u _y} + {\overrightarrow a _y}t$$$${\overrightarrow v _y} = u\sin \theta + \left( { - g} \right)t$$$${\overrightarrow v _y} = u\sin \theta - gt$$

$$v = \sqrt {v_x^2 + v_y^2} $$$$v = \sqrt {{{\left( {u\cos \theta } \right)}^2} + {{\left( {u\sin \theta - gt} \right)}^2}} $$$$v = \sqrt {{u^2}{{\cos }^2}\theta + {u^2}{{\sin }^2}\theta + {g^2}{t^2} - 2ugt\sin \theta } $$$$v = \sqrt {{u^2} + {g^2}{t^2} - 2ugt\sin \theta } $$

Question: A particle is projected from ground level with an initial velocity of $35\ m/s$ at angle of ${\tan ^{ - 1}}\left[ {\frac{3}{4}} \right]$ to the horizontal. Find the time for which the particle is more than $2\ m$ above the ground. $\left( {g = 10\,m/{s^2}} \right)$

Solution: Given, $$\theta = {\tan ^{ - 1}}\left[ {\frac{3}{4}} \right]\quad {\text{or}}\quad \tan \theta = \frac{3}{4}$$ So, $$\sin \theta = \frac{3}{5}\quad {\text{and}}\quad \cos \theta = \frac{4}{5}$$
When the particle travel between points $A$ and $C$, then the particle is more than $2\ m$ above the ground.

At point $A$ and $C$, the particle has vertical displacement of $2\ m$


Horizontal motionVertical motion
${u_x} = u\cos \theta $${u_y} = u\sin \theta$
${a_x} = 0$${a_y} = - g=-10$

${\overrightarrow u _y} = u\sin \theta = 35 \times \frac{3}{5} = 21\,m/s$
${\overrightarrow a _y} = - g = - 10\,m/{s^2}$
${\overrightarrow s _y} = + 2m$
$t=?$
So, we can write,
$${\overrightarrow s _y} = {\overrightarrow u _y}t + \frac{1}{2}{\overrightarrow a _y}{t^2}$$$$ + 2 = 21t + \frac{1}{2}\left( { - 10} \right){t^2}$$$$2 = 21t - 5{t^2}$$$$5{t^2} - 21t + 2 = 0$$
Solving for $t$ we get, $${t_A} = 0.098s\quad {\text{and}}\quad {t_C} = 4.102s$$
So, the time for which the particle is between $A$ and $C$ is,
$$\Delta t = {t_C} - {t_A}$$$$\Delta t = \left( {4.102 - 0.098} \right)s$$$$\Delta t = 4.00s$$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD