Physics > Motion in Two Dimension > 5.0 Projectile on an inclined plane

  Motion in Two Dimension
    1.0 Introduction
    2.0 Projectile motion
    3.0 Ground to ground projectile motion
    4.0 Projectile thrown parallel to the horizontal
    5.0 Projectile on an inclined plane
    6.0 Relative motion between two projectiles

5.1 Up the incline projectile motion

Consider a particle is projected with velocity $u$ making an angle $\theta$ with the inclined plane having inclination $\alpha$ with the horizontal.


$X$
Horizontal motion

$Y$
Vertical motion
${\overrightarrow u _X} = + u \cos \theta$
${\overrightarrow u _Y} = +u \sin \theta$
${\overrightarrow a _X} = -g \sin \alpha$
${\overrightarrow a _Y} = - g \cos \alpha$


5.1.1 Time of flight $(T)$


${\overrightarrow u _Y}=+u \sin \theta$
${\overrightarrow a _Y}=-g \cos \alpha$
${\overrightarrow s _{Y}}=0$
$t=T$

Therefore we can write kinematics equation which relates displacement and time as,
$${\overrightarrow s _Y} = {\overrightarrow u _Y}t + \frac{1}{2}{\overrightarrow a _Y}{t^2}$$$$0 = \left( {u\sin \theta } \right)T + \frac{1}{2}\left( { - g\cos \alpha } \right){T^2}$$$$T = \frac{{2u\sin \theta }}{{g\cos \alpha }}$$


5.1.2 Maximum height $\left( {{H_{\max }}} \right)$


At maximum height velocity perpendicular to the inclined plane is zero.

${\overrightarrow u _Y}=+u \sin \theta$
${\overrightarrow v _Y}=0$
${\overrightarrow a _Y}=-g \cos \alpha$
${\overrightarrow s _{Y}}=+H_{max}$

Therefore we can write kinematics equation which relates displacement and velocity as,
$${v^2} = {u^2} + 2{\overrightarrow a _Y}{\overrightarrow s _Y}$$$$0 = {u^2}{\sin ^2}\theta + 2\left( { - g\cos \alpha } \right)\left( { + {H_{\max }}} \right)$$$${H_{\max }} = \frac{{{u^2}{{\sin }^2}\theta }}{{2g\cos \alpha }}$$


5.1.3 Range $(R)$


In this case, the horizontal distance travelled by the projectile along the incline during time of flight is known as range.

${\overrightarrow u _X}=+u \cos \theta$
${\overrightarrow a _X}=-g \sin \alpha$
${\overrightarrow s _{X}}=+R$
$t = T = \frac{{2u\sin \theta }}{{g\cos \alpha }}$

Therefore we can write kinematics equation which relates displacement and time as,
$${\overrightarrow s _X} = {\overrightarrow u _X}t + \frac{1}{2}{\overrightarrow a _X}{t^2}$$$$ + R = \left( {u\cos \theta } \right)\left( {\frac{{2u\sin \theta }}{{g\cos \alpha }}} \right) + \frac{1}{2}\left( { - g\sin \alpha } \right){\left( {\frac{{2u\sin \theta }}{{g\cos \alpha }}} \right)^2}$$$$R = \frac{{2{u^2}\sin \theta \cos \theta }}{{g\cos \alpha }} - \frac{{4g{u^2}{{\sin }^2}\theta \sin \alpha }}{{2{g^2}{{\cos }^2}\alpha }}$$$$R = \frac{{2{u^2}\sin \theta \cos \theta }}{{g\cos \alpha }} - \frac{{2{u^2}{{\sin }^2}\theta \sin \alpha }}{{g{{\cos }^2}\alpha }}$$$$R = \frac{{2{u^2}\sin \theta }}{{g\cos \alpha }}\left( {\cos \theta - \frac{{\sin \theta \sin \alpha }}{{\cos \alpha }}} \right)$$$$R = \frac{{2{u^2}\sin \theta }}{{g\cos \alpha }}\left( {\frac{{\cos \theta \cos \alpha - \sin \theta \sin \alpha }}{{\cos \alpha }}} \right)$$$$R = \frac{{2{u^2}\sin \theta \cos \left( {\theta + \alpha } \right)}}{{g{{\cos }^2}\alpha }}$$
where,

$\alpha:$ angle which inclined plane makes with the horizontal
$\theta:$ angle of projection from the inclined plane

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD