Chemistry > d and f Block Elements > 7.0 Lanthanoid Series

  d and f Block Elements
    1.0 General Introduction and Electronic Configuration
    2.0 Occurrence and General Characteristics of Transition Elements
    3.0 General Trends in properties of First Row Elements
    4.0 Potassium dichromate
    5.0 Potassium permanganate
    6.0 F-Block Elements - Introduction
    7.0 Lanthanoid Series
    8.0 Lanthanoid Contraction and its consequence
    9.0 Actinoids Series
    10.0 Comparison between lanthanoids and actinoids

7.3 Oxidation States
  • Total numerical charge assigned on the atom of an element in molecule is called oxidation state.

  • Lanthanoids show $+3$ common oxidation state by losing two electrons from $6s$ and one from $5d$ or $4f$.

  • In addition to $+3$ they may show $+2$ and $+4$ oxidation state.


ElementOxidation StateOuter electronic configuration of
$M$${M^{ + 2}}$${M^{ + 3}}$${M^{ + 4}}$
La+3$5{d^1}6{s^2}$-$5{d^0}6{s^0}$-
Ce+3,+4$4{f^2}6{s^2}$-$4{f^1}6{s^0}$$4{f^0}6{s^0}$
Pr+3,+4$4{f^3}6{s^2}$-$4{f^2}6{s^0}$$4{f^1}6{s^0}$
Nd+2,+3,+4$4{f^4}6{s^2}$$4{f^4}6{s^0}$$4{f^3}6{s^0}$$4{f^2}6{s^0}$
Pm+3$4{f^5}6{s^2}$-$4{f^4}6{s^0}$-
Sm+2,+3$4{f^6}6{s^2}$$4{f^6}6{s^0}$$4{f^5}6{s^0}$-
Eu+2,+3$4{f^7}6{s^2}$$4{f^7}6{s^0}$$4{f^6}6{s^0}$-
Gd+3$4{f^7}5{d^1}6{s^2}$-$4{f^7}6{s^0}$-
Tb+3,+4$4{f^9}6{s^2}$-$4{f^8}6{s^0}$$4{f^7}6{s^0}$
Dy+3,+4$4{f^10}6{s^2}$-$4{f^9}6{s^0}$$4{f^8}6{s^0}$
Ho+3$4{f^11}6{s^2}$-$4{f^10}6{s^0}$-
Er+3$4{f^12}6{s^2}$-$4{f^11}6{s^0}$-
Tm+2,+3$4{f^13}6{s^2}$$4{f^13}6{s^0}$$4{f^12}6{s^0}$-
Yb+2,+3$4{f^14}6{s^2}$$4{f^14}6{s^0}$$4{f^13}6{s^0}$-
Lu+3$4{f^14}5{d^1}6{s^2}$-$4{f^14}6{s^0}$-


Table: Outer electronic configuration and oxidation states of lanthanum and lanthanides.



  • Lanthanum show only $+3$ most stable oxidation state by losing two electrons from $6s$ and one from $5d$ orbital have the configuration of $Xe$.


  • Gadolinium form only $+3$ most stable oxidation state ($G{d^{ + 3}} - [Xe]4{f^7}$) due to half filled stability of $'f'$ subshell.


  • Lutetium also form only $+3$ oxidation state due to extra stability of completely filled $4f$ ($L{u^{ + 3}} - [Xe]4{f^{14}}$).


  • Cerium $(Ce)$, Terbium $(Tb)$ attains $4{f^0}$ and $4{f^7}$ by losing four electrons form $C{e^{ + 4}}$ and $T{b^{ + 4}}$. having extra stability due to empty and half filled configuration.


  • $E{u^{ + 2}}$ ($4{f^7}$) and $Yb$ ($4{f^14}$) are stable respectively due to extra stability of half filled and completely filled $4f$ subshells.


  • Stability of $S{m^{ + 2}}$ and $T{m^{ + 2}}$ are explained on the basis of thermodynamic properties.


  • The di-positive ions like $S{m^{ + 2}}$, $E{u^{ + 2}}$, $Y{b^{ + 2}}$ behaves as a reducing agent and ions like $C{e^{ + 4}}$ and $T{b^{ + 4}}$ acts as a good oxidizing agents.


  • Most of the $+2$ and $+4$ ions of lanthanoids have not $4{f^0}$, $4{f^7}$ or $4{f14}$ electronic configuration e.g. $P{r^{ 4}}$($4{f^1}$), $N{a^{ + 2}}$($4{f^4}$), $S{m^{ + 2}}$($4{f^6}$), $D{y^{ + 4}}$($4{f^8}$).
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD