Physics > Centre of Mass and Conservation of Linear Momentum > 10.0 Head on elastic and inelastic collision

  Centre of Mass and Conservation of Linear Momentum
    1.0 Introduction
    2.0 Position of centre of mass of continuous bodies
    3.0 Centre of mass of the remaining portion
    4.0 Laws of conservation of linear momentum
    5.0 Variable Mass
    6.0 Impulse
    7.0 Collision
    8.0 Types of collision
    9.0 Newton's law of restitution
    10.0 Head on elastic and inelastic collision
    11.0 Collision in two dimension
    12.0 Oblique collision

10.1 Head on elastic collision


In elastic collision, linear momentum and kinetic energy of the colliding bodies are conserved before and after the collision.

In elastic collision, both the bodies comes to their original shape and size after the collision.

So no energy remains stored as deformation potential energy in the bodies.

So, the total energy before and after the collision remains same.

Therefore the kinetic energy is also conserved in addition to the linear momentum.

Let us consider two balls $A$ & $B$ of masses $m_1$ & $m_2$ respectively. Their velocities are $u_1$ & $u_2$ $\left( {{u_1} > {u_2}} \right)$ before the collision and $v_1$ & $v_2$ after the collision along the same line.

Conservation of linear momentum along the horizontal direction,
$${m_1}{u_1} + {m_2}{u_2} = {m_1}{v_1} + {m_2}{v_2}$$ or $${m_1}\left( {{u_1} - {v_1}} \right) = {m_2}\left( {{v_2} - {u_2}} \right)\quad ...(i)$$
Conservation of total kinetic energy before and after the collision,
$$\frac{1}{2}{m_1}u_1^2 + \frac{1}{2}{m_2}u_2^2 = \frac{1}{2}{m_1}v_1^2 + \frac{1}{2}{m_2}v_2^2$$ or $$\begin{equation} \begin{aligned} \frac{1}{2}{m_1}\left( {u_1^2 - v_1^2} \right) = \frac{1}{2}{m_2}\left( {v_2^2 - u_2^2} \right) \\ {m_1}\left( {{u_1} - {v_1}} \right)\left( {{u_1} + {v_1}} \right) = {m_2}\left( {{v_2} - {u_2}} \right)\left( {{v_2} + {u_2}} \right)\quad ...(ii) \\\end{aligned} \end{equation} $$
Dividing equation $(ii)$ by $(i)$ we get, $$\left( {{u_1} + {v_1}} \right) = \left( {{v_2} + {u_2}} \right)$$ or $${v_2} - {v_1} = {u_1} - {u_2}$$ or $$\frac{{{v_2} - {v_1}}}{{{u_1} - {u_2}}} = 1 = e$$
So, for elastic collision coefficient of restitution $(e)=1$

Also, $${v_2} = {v_1} + {u_1} - {u_2}\quad ...(iii)$$
From equation $(i)$ & $(iii)$ we get, $$\begin{equation} \begin{aligned} {m_1}\left( {{u_1} - {v_1}} \right) = {m_2}\left( {{v_1} + {u_1} - {u_2} - {u_2}} \right) \\ {m_1}\left( {{u_1} - {v_1}} \right) = {m_2}\left( {{v_1} + {u_1} - 2{u_2}} \right) \\ {v_1}\left( {{m_1} + {m_2}} \right) = \left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2} \\\end{aligned} \end{equation} $$ $${v_1} = \frac{{\left( {{m_1} - {m_2}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}{u_1} + \frac{{2{m_2}}}{{\left( {{m_1} + {m_2}} \right)}}{u_2}\quad ...(v)$$
Similarly, $${v_2} = \frac{{\left( {{m_2} - {m_1}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}{u_2} + \frac{{2{m_1}}}{{\left( {{m_1} + {m_2}} \right)}}{u_1}\quad ...(vi)$$

Special cases



  • When ${m_1} = {m_2} = m$
Substituting the value in equation $(v)$ & $(vi)$ we get, $${v_1} = {u_2}\quad \& \quad {v_2} = {u_1}$$

So, when two bodies of equal masses undergoes head on collision, they exchange their velocities.


  • When ${m_1} \gg {m_2}$
When ${m_1} \gg {m_2}$, then $\left( {\frac{{{m_2}}}{{{m_1}}}} \right) \approx 0$.


Therefore substituting the condition in equation $(v)$ & $(vi)$ we get, $$\begin{equation} \begin{aligned} {v_1} = \frac{{\left( {1 - \frac{{{m_2}}}{{{m_1}}}} \right)}}{{\left( {1 + \frac{{{m_2}}}{{{m_1}}}} \right)}}{u_1} + \frac{{2\frac{{{m_2}}}{{{m_1}}}}}{{\left( {1 + \frac{{{m_2}}}{{{m_1}}}} \right)}}{u_2} \\ {v_1} \approx {u_1} \\\end{aligned} \end{equation} $$
Similarly, $$\begin{equation} \begin{aligned} {v_2} = \frac{{\left( {\frac{{{m_2}}}{{{m_1}}} - 1} \right)}}{{\left( {1 + \frac{{{m_2}}}{{{m_1}}}} \right)}}{u_2} + \frac{2}{{\left( {1 + \frac{{{m_2}}}{{{m_1}}}} \right)}}{u_1} \\ {v_2} \approx 2{u_1} - {u_2} \\\end{aligned} \end{equation} $$
So, when a heavy body hits a light body from behind velocity of the heavy body remains unchanged.


  • When ${m_2} \gg {m_1}$
When ${m_2} \gg {m_1}$, then $\left( {\frac{{{m_1}}}{{{m_2}}}} \right) \approx 0$.


Therefore substituting the condition in equation $(v)$ & $(vi)$ we get, $$\begin{equation} \begin{aligned} {v_1} = \frac{{\left( {\frac{{{m_1}}}{{{m_2}}} - 1} \right)}}{{\left( {\frac{{{m_1}}}{{{m_2}}} + 1} \right)}}{u_1} + \frac{2}{{\left( {\frac{{{m_1}}}{{{m_2}}} + 1} \right)}}{u_2} \\ {v_1} \approx 2{u_2} - {u_1} \\\end{aligned} \end{equation} $$
Similarly, $$\begin{equation} \begin{aligned} {v_2} = \frac{{\left( {1 - \frac{{{m_1}}}{{{m_2}}}} \right)}}{{\left( {\frac{{{m_1}}}{{{m_2}}} + 1} \right)}}{u_2} + \frac{{2\frac{{{m_1}}}{{{m_2}}}}}{{\left( {\frac{{{m_1}}}{{{m_2}}} + 1} \right)}}{u_1} \\ {v_2} \approx {u_2} \\\end{aligned} \end{equation} $$
So, when a light body hits a heavy body from behind velocity of the heavy body remains unchanged.


Question 21. Two bodies of mass $m$ & $3m$ moving in opposite directions collide elastically with velocities $v$ & $2v$. Find their velocities after collision.


Solution: Initial linear momentum $\left( {{{\overrightarrow p }_i}} \right)$,
$$\begin{equation} \begin{aligned} {\overrightarrow p _i} = mv\widehat i + 3m( - 2v)\widehat i \\ {\overrightarrow p _1} = - 5mv\widehat i\quad ...(i) \\\end{aligned} \end{equation} $$
Let us assume the velocities of the two bodies after collision. Then the final linear momentum $\left( {{{\overrightarrow p }_f}} \right)$,
$${\overrightarrow p _f} = m{\overrightarrow v _1} + 3m{\overrightarrow v _2}\quad ...(ii)$$
As the collision is elastic. Therefore, $$\begin{equation} \begin{aligned} e = \frac{{{v_{{2_{CN}}}} - {v_{{1_{CN}}}}}}{{{u_{{1_{CN}}}} - {u_{{2_{CN}}}}}} \\ 1 = \frac{{{{\overrightarrow v }_2} - {{\overrightarrow v }_1}}}{{v\widehat i - ( - 2v)\widehat i}} \\ {\overrightarrow v _2} - {\overrightarrow v _1} = 3v\widehat i \\ {\overrightarrow v _2} = {\overrightarrow v _1} + 3v\widehat i\quad ...(iii) \\\end{aligned} \end{equation} $$
During collision, the linear momentum is conserved. So, from equation $(i)$, $(ii)$ & $(iii)$ we get,
$$\begin{equation} \begin{aligned} {\overrightarrow p _i} = {\overrightarrow p _f} \\ - 5mv\widehat i = m{\overrightarrow v _1} + 3m\left( {{{\overrightarrow v }_1} + 3v\widehat i} \right) \\ {\overrightarrow v _1} = - \frac{{7v}}{2}\widehat i\quad ...(iv) \\\end{aligned} \end{equation} $$
From equation $(iii)$ & $(iv)$ we get, $${\overrightarrow v _2} = - \frac{v}{2}\widehat i$$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD