Centre of Mass and Conservation of Linear Momentum
    1.0 Introduction
    2.0 Position of centre of mass of continuous bodies
    3.0 Centre of mass of the remaining portion
    4.0 Laws of conservation of linear momentum
    5.0 Variable Mass
    6.0 Impulse
    7.0 Collision
    8.0 Types of collision
    9.0 Newton's law of restitution
    10.0 Head on elastic and inelastic collision
    11.0 Collision in two dimension
    12.0 Oblique collision

6.1 Instantaneous impulse
Instantaneous impulse is defined as the impulse at any moment.
$$\overrightarrow I = \int {\overrightarrow F dt} $$
From equation $(i)$ we get, $$\Delta \overrightarrow p = \int {\overrightarrow F dt} $$

Question 18. A $2kg$ ball drops on floor from a height of $20m$ and rebounds with $20%$ of the initial speed. Find the impulse received by the ball.

Solution: Velocity $\left( {{{\overrightarrow v }_i}} \right)$ when the ball hits the ground,
$$\begin{equation} \begin{aligned} v_i^2 = {u^2} + 2\overrightarrow g \overrightarrow h \\ v_i^2 = 0 + 2( - 10)({h_f} - {h_i}) \\ v_i^2 = 0 + 2( - 10)(0 - 20) \\ {v_i} = 20m/s{\text{ (downward)}}\quad ...(i) \\\end{aligned} \end{equation} $$
Initial linear momentum, $$\left( {{{\overrightarrow p }_i}} \right) = m{\overrightarrow v _i} = 2( - 20)\widehat j = - 40\widehat j\;N/s\quad ...(ii)$$
Velocity $\left( {{{\overrightarrow v }_f}} \right)$ with which the ball rebounds, $$\begin{equation} \begin{aligned} {v_f} = 0.20\left( {{v_i}} \right) \\ {v_f} = 4\;m/s{\text{ (upwards)}}\quad ...(iii) \\\end{aligned} \end{equation} $$
Final linear momentum $$\left( {{{\overrightarrow p }_f}} \right) = m{\overrightarrow v _f} = 2( + 4)\widehat j = 8\widehat j\;N/s\quad ...(iv)$$
Change in linear momentum $\left( {\Delta \overrightarrow p } \right)$, $$\begin{equation} \begin{aligned} \Delta \overrightarrow p = {\overrightarrow p _f} - {\overrightarrow p _i} \\ \Delta \overrightarrow p = 8\widehat j - ( - 40)\widehat j \\ \Delta \overrightarrow p = 48\widehat {j\;}\;N/s \\\end{aligned} \end{equation} $$
Note: $\widehat {j\;}$ is a unit vector in the vertical direction.

Question 19.An inextensible string is passing over a light frictionless pulley. One end of the string is connected to a block of mass $4m$ which is resting on a horizontal surface. To another end, a plate of mass $m$ is attached and is hanging in the air. A ball of mass $m$ strikes from above with vertical velocity $v_0$ and sticks to the plate. Calculate maximum height attained by a block of mass $4m$.


Solution: Initially the system is at rest.

When the ball of mass $m$ strikes the pan with a velocity $v_0$, it generates tension $T$ in the string.

Let us consider an impulse $I$ due to the tension $T$ for an infinitesimally small time $dt$, $$I = Tdt$$
For ball and the pan,

Momentum before impact $\left( {{{\overrightarrow p }_i}} \right)$, $${\overrightarrow p _i} = - m{v_0}\widehat j\quad ...(ii)$$
After the impact, ball and pan sticks with each other and move with a velocity $v$.

Momentum after impact $\left( {{{\overrightarrow p }_f}} \right)$, $${\overrightarrow p _f} = - 2mv\;\widehat j\quad ...(iii)$$
Impulse for the ball and pan is given by, $$\begin{equation} \begin{aligned} \overrightarrow I = {\overrightarrow p _f} - {\overrightarrow p _i} \\ \overrightarrow I = - 2mv\;\widehat j - \left( { - m{v_0}\;\widehat j} \right) \\ \overrightarrow I = - 2mv\;\widehat j + m{v_0}\;\widehat j\quad ...(iv) \\\end{aligned} \end{equation} $$
For block of mass $4m$,

Momentum before impact $\left( {{{\overrightarrow p }_i}} \right)$, $${\overrightarrow p _i} = 0\quad ...(v)$$
After the impact, block of mass $4m$ also moves with velocity $v $ as the string is inextensible.

Momentum after impact $\left( {{{\overrightarrow p }_f}} \right)$, $${\overrightarrow p _f} = + 4mv\;\widehat j\quad ...(vi)$$
Impulse for the ball and pan is given by, $$\begin{equation} \begin{aligned} \overrightarrow I = {\overrightarrow p _f} - {\overrightarrow p _i} \\ \overrightarrow I = 4mv\;\widehat j - 0 \\ \overrightarrow I = 4mv\;\widehat j\quad ...(vii) \\\end{aligned} \end{equation} $$
From equation $(iv)$ & $(vii)$, we get, $$\begin{equation} \begin{aligned} 4mv\;\widehat j = - 2mv\;\widehat j + m{v_0}\;\widehat j \\ 6mv\;\widehat j = m{v_0}\;\widehat j \\ v = \frac{{{v_0}}}{6}\quad ...(viii) \\\end{aligned} \end{equation} $$
From FBD we can write, $$\begin{equation} \begin{aligned} T - 2mg = 2ma\quad ...(ix) \\ 4mg - T = 4ma\quad ...(x) \\\end{aligned} \end{equation} $$
Adding the above equation we get, $$\begin{equation} \begin{aligned} 2mg = 6ma \\ a = \frac{g}{3}\quad ...(ix) \\\end{aligned} \end{equation} $$
The equation of motion for the block can be written as, $$\begin{equation} \begin{aligned} {v^2} = {u^2} + 2\overrightarrow g \overrightarrow s \\ 0 = {\left( {\frac{{{v_0}}}{6}} \right)^2} + 2\left( { - \frac{g}{3}} \right)\left( s \right) \\ s = \frac{{v_0^2}}{{24g}} \\\end{aligned} \end{equation} $$


Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD