Physics > Centre of Mass and Conservation of Linear Momentum > 2.0 Position of centre of mass of continuous bodies

  Centre of Mass and Conservation of Linear Momentum
    1.0 Introduction
    2.0 Position of centre of mass of continuous bodies
    3.0 Centre of mass of the remaining portion
    4.0 Laws of conservation of linear momentum
    5.0 Variable Mass
    6.0 Impulse
    7.0 Collision
    8.0 Types of collision
    9.0 Newton's law of restitution
    10.0 Head on elastic and inelastic collision
    11.0 Collision in two dimension
    12.0 Oblique collision

2.3 Semicircular disc


Consider a uniform semicircular disc of radius $R$ and mass $M$, whose centre is at the origin of a cartesian co-ordinate (for simplicity).


Area of the semicircular disc $(A) = \frac{{\pi {R^2}}}{2}\quad ...(i)$

Mass per unit area $\left( {{\lambda _A}} \right) = \frac{{2M}}{{\pi {R^2}}}\quad ...(ii)$


Consider a ring of radius $s$ and infinitesimal small thickness $ds$ having its centre at the origin and mass $dm$ at point $P$ on the disc.


Co-ordinate of the centre of mass of the ring passing through point $P$ is $\left( {0,\frac{{2s}}{\pi }} \right)$.


Co-ordinate of point $P$ is $(R\sin \theta ,\;R\cos \theta )$


So, the position vector of the centre of mass $(COM)$ of ring passing through point $P$ is ${\overrightarrow r _{CO{M_P}}} = \frac{{2s}}{\pi }\widehat j$


Area of the ring is, $$dA = \left( {\pi s} \right)ds\quad ...(iii)$$ Also, $$\begin{equation} \begin{aligned} dm = {\lambda _A}.\;dA \\ dm = {\lambda _A}\pi sds\quad ...(iv) \\\end{aligned} \end{equation} $$

Therefore, the centre of mass $(COM)$ of the semicircular disc is given by, $${\overrightarrow r _{COM}} = \frac{{\int {{{\overrightarrow r }_{CO{M_P}}}dm} }}{{\int {dm} }} = \frac{{\int {\frac{{2s}}{\pi }dm} }}{{\int {dm} }}\widehat j\quad ...(v)$$

From equation $(iv)$ & $(v)$ we get, $$\begin{equation} \begin{aligned} {\overrightarrow r _{COM}}\frac{{\int {\frac{{2s}}{\pi }{\lambda _A}\pi sds} }}{{\int {{\lambda _A}\pi sds} }}\widehat j \\ {\overrightarrow r _{COM}}\frac{2}{\pi }\frac{{\int {{s^2}ds} }}{{\int {sds} }}\widehat j \\\end{aligned} \end{equation} $$

Integrating for the semicircular disc from point $O$ to $A$,


At point $O$, $s=0$ & at point $A$, $s=R$, so the limit becomes, $$\begin{equation} \begin{aligned} {\overrightarrow r _{COM}}\frac{2}{\pi }\frac{{\int {{s^2}ds} }}{{\int {sds} }}\widehat j \\ {\overrightarrow r _{COM}}\frac{2}{\pi }\frac{{\int\limits_0^R {{s^2}ds} }}{{\int\limits_0^R {sds} }}\widehat j \\ {\overrightarrow r _{COM}}\frac{2}{\pi }\frac{{\left[ {\frac{{{s^3}}}{3}} \right]_0^R}}{{\left[ {\frac{{{s^2}}}{2}} \right]_0^R}}\widehat j \\ {\overrightarrow r _{COM}} = \frac{{4R}}{{3\pi }}\widehat j \\\end{aligned} \end{equation} $$

So, the centre of mass $(COM)$ of the uniform semicircular disc is $\left( {0,\frac{{4R}}{{3\pi }}} \right)$.

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD